05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

18.12 Diatomic Maxwell-Boltzmann Gases 755<br />

and<br />

ðc p Þ trans = 5 2 R<br />

(18.53a)<br />

ðc p Þ rot = ðc v Þ rot = R<br />

(18.53b)<br />

Thus,<br />

ðc p Þ vib<br />

= ðc v Þ vib<br />

= R ð Θ v/TÞ 2 ½expðΘ v /TÞŠ<br />

½expðΘ v /TÞ− 1Š 2 (18.53c)<br />

c p = ðc p Þ trans<br />

+ ðc p Þ rot<br />

+ ðc p Þ vib<br />

= 7 2 R + R ð Θ v/TÞ 2 ½expðΘ v /TÞŠ<br />

½expðΘ v /TÞ− 1Š 2 (18.53d)<br />

Finally,<br />

n<br />

s trans = R ln 2πm/ħ 2 3/2<br />

ðkTÞ 5/2 /p + 5 o<br />

2<br />

(18.54a)<br />

s rot = Rfln ½T/ðσ Θ r ÞŠ+ 1g (18.54b)<br />

n<br />

s vib = R ln 1 − expð−Θ v /TÞ o<br />

−1<br />

+ ð Θv /TÞ/ ½expðΘ v /TÞ− 1Š<br />

(18.54c)<br />

Thus,<br />

s = s trans + s rot + s vib<br />

n<br />

= R ln ð2πm/ħ 2 Þ 3/2 ðkTÞ 5/2 /p + 5 o<br />

+ Rfln ½T/ðσ Θ r ÞŠ+ 1g<br />

2<br />

n<br />

+ R ln 1 − expð−Θ v /TÞ o<br />

−1<br />

+ ð Θv /TÞ/ ½expðΘ v /TÞ− 1Š<br />

(18.54d)<br />

These equations produce reasonably accurate results for diatomic gases at moderate to high temperatures, as<br />

illustrated by the following example.<br />

EXAMPLE 18.9<br />

To test the diatomic Maxwell-Boltzmann gas equations just developed, compute the value of c v /R for nitrous oxide (NO) at<br />

20.0°C and compare it with the measured result given in Table 18.3.<br />

Solution<br />

For a diatomic Maxwell-Boltzmann gas, the constant volume specific heat is given by Eq. (18.52d) as<br />

then,<br />

From Table 18.8, we find that Θ v = 2740 K for NO, so,<br />

c v = 5 2 R + RðΘ v/TÞ 2 expðΘ v /TÞ<br />

½expðΘ v /TÞ − 1Š 2<br />

c v<br />

R = 5 2 + ðΘ v/TÞ 2 expðΘ v /TÞ<br />

½expðΘ v /TÞ − 1Š 2<br />

<br />

2 <br />

2<br />

2740<br />

2740<br />

<br />

c v<br />

= 5 R NO 2 + 20:0 + 273:15 exp<br />

20:0 + 273:15<br />

<br />

= 2:51<br />

exp<br />

2740<br />

− 1<br />

20:0 + 273:15<br />

as in Table 18.3. Note that, since R NO = Y/M NO = 8.3143/30.01 = 0.2771 kJ/kg·K, then (c v ) NO = 0.2771 × 2.51 = 0.695 kJ/kg·K<br />

at 20.0°C.<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!