05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13.17 Aircraft Gas Turbine Engines 501<br />

Similarly, the turbine’s (prime mover) isentropic efficiency is given by<br />

ðη s Þ pm =<br />

where, using the constant specific heats, we obtain<br />

Then,<br />

3a. The Brayton cold ASC thermal efficiency is given by<br />

ð _W pm Þ actual<br />

ð _W pm Þ isentropic<br />

= T 1 − T 2<br />

T 1 − T 2s<br />

T 2s = T 1 ðp 2s /p 1 Þ ðk−1Þ/k = ð2060Þð28:0/190:<br />

Þ ð1:40−1Þ/1:40 = 1190 R = 730:°F<br />

ðη T Þ<br />

Brayton<br />

cold ASC<br />

ðη s Þ pm<br />

=<br />

2060 − 1350<br />

= 0:816 = 81:6%<br />

2060 − 1190<br />

ðconstant<br />

specific heatsÞ<br />

= T 1 − T 2s − ðT 4s − T 3 Þ<br />

T 1 − T 4s<br />

2060 − 1190 − 1100 − 520:<br />

= ð<br />

Þ = 0:302 = 30:2%<br />

2060 − 1100<br />

but the actual thermal efficiency of the engine, based on constant specific heats and the data provided in the schematic, is<br />

ðη T Þ Brayton<br />

ðactual, constant<br />

specific heatsÞ<br />

= T 1 − T 2 − ðT 4 − T 3 Þ<br />

T 1 − T 4<br />

2060 − 1350 − 1175 − 520:<br />

= ð<br />

Þ = 0:062 = 6:2%<br />

2060 − 1175<br />

2b. We can easily take into account the temperature-dependent specific heats by using Table C.16a in Thermodynamic Tables<br />

to accompany <strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. For the compressor, p r4 = ðp 4s /p 3 Þ = ð1:2147Þð200:/14:7Þ = 16:5 and,<br />

by interpolation in Table C.16a, we find that T 4s = 1084 R = 624°F. Then,<br />

Similarly, for the turbine,<br />

ðη s Þ c<br />

ðvariable<br />

specific heatsÞ<br />

= T 4s − T 3<br />

=<br />

1084 − 520:<br />

= 0:861 = 86:1%<br />

T 4 − T 3 1175 − 520:<br />

p r2 = p r1 ðp 2s /p 1 Þ = ð196:16Þð28:0/190:Þ = 28:9<br />

and, by interpolation in Table C.16a, we find that T 2s = 1261 R = 801°F. Then,<br />

3b. Finally, the Brayton hot ASC can be easily determined from<br />

where, from Table C.16a,<br />

Then,<br />

ðη s Þ pm<br />

= T 1 − T 2 2060 − 1350<br />

= = 0:889 = 88:9%<br />

T 1 − T 2s 2060 − 1261<br />

ðvariable<br />

specific heatsÞ<br />

ðη T Þ Brayton<br />

= h 1 − h 2s − ðh 4s − h 3 Þ<br />

h 1 − h 4s<br />

hot ASC<br />

h 3 = 124 Btu/lbm ðat 520:RÞ<br />

h 4s = 262 Btu/lbm ðby interpolation at 1084 RÞ<br />

h 1 = 521 Btu/lbm ðat 2060 RÞ<br />

h 2s = 307 Btu/lbm ðby interpolation at 1261 RÞ<br />

521 − 307 − ð262 − 124Þ<br />

ðη T Þ Brayton<br />

= = 0:293 = 29:3%<br />

521 − 262<br />

hot ASC<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!