05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

10.11 Energy Efficiency Based on the Second Law 349<br />

b. The second law availability efficiency of the preheater is given by Eq. (10.36), where the flow availability is given by<br />

Eq. (10.20):<br />

a f = h − h 0 − T 0 ðs − s 0 Þ + V2 + gZ<br />

2g c g c<br />

and since both flow streams are constant specific heat ideal gases, this equation reduces to<br />

<br />

a f = c p ðT − T 0 Þ − T 0 c p ln T T 0<br />

<br />

<br />

− R ln p p 0<br />

<br />

<br />

+ V2<br />

2g c<br />

+ gZ<br />

g c<br />

We neglect kinetic and potential energy terms here, so we can evaluate this equation for each of the four flow<br />

streams as<br />

<br />

<br />

kJ<br />

a f = 0:990 ð500: − 20:0KÞ<br />

in-exh<br />

kg.K<br />

<br />

− ð20:0 + 273:15 KÞ 0:990 kJ<br />

<br />

kg .K<br />

+ 0 + 0 = 201 kJ/kg<br />

<br />

<br />

kJ<br />

a f = 0:990 ð400: − 20:0KÞ<br />

out-exh<br />

kg.K<br />

<br />

− ð20:0 + 273:15 KÞ 0:990 kJ<br />

<br />

kg .K<br />

+ 0 + 0 = 135 kJ/kg<br />

<br />

<br />

kJ<br />

a f = 1:004 ð20:0 − 20:0KÞ<br />

in-air<br />

kg .K<br />

<br />

− ð20:0 + 273:15 KÞ 1:004 kJ<br />

<br />

kg.K<br />

+ 0 + 0 = 34:0 kJ/kg<br />

<br />

<br />

kJ<br />

a f = 1:004 ð118:6 − 20:0KÞ<br />

out-air<br />

kg .K<br />

<br />

− ð20:0 + 273:15 KÞ 1:004 kJ<br />

<br />

kg .K<br />

+ 0 + 0 = 41:9 kJ/kg<br />

Then Eq. (10.36) gives the second law availability efficiency as<br />

ln<br />

ln<br />

<br />

<br />

500: + 273:15<br />

20:0 + 273:15<br />

<br />

<br />

400: + 273:15<br />

20:0 + 273:15<br />

ln<br />

ln<br />

<br />

<br />

20:0 + 273:15<br />

20:0 + 273:15<br />

<br />

<br />

118:6 + 273:15<br />

20:0 + 273:15<br />

<br />

− 0:272 kJ<br />

<br />

kg.K<br />

<br />

− 0:272 kJ<br />

<br />

kg.K<br />

<br />

− 0:286 kJ<br />

<br />

kg.K<br />

<br />

− 0:286 kJ<br />

<br />

kg .K<br />

<br />

ln 1:10 <br />

1:00<br />

<br />

ln 1:00 <br />

1:00<br />

<br />

ln 1:50<br />

1:00<br />

<br />

<br />

ln 1:40 <br />

1:00<br />

ε nonmixing HX<br />

=<br />

_m air½ða f Þ out air<br />

− ða f Þ in air<br />

Š ð0:800 kg/sÞð41:9 − 34:0 kJ/kgÞ<br />

= = 0:119 = 11:9%<br />

_m exh ½ða f Þ in exh<br />

− ða f Þ out exh<br />

Š ð0:800 kg/sÞð201 − 135 kJ/kgÞ<br />

Exercises<br />

44. Determine the second law efficiency of the air preheater in Example 10.15 when the exhaust inlet temperature<br />

isincreasedfrom500.°C to 750.°C. Assume all the other variables (except T 4 ) remain unchanged.<br />

Answer: ε HX<br />

= 48.0%.<br />

45. Calculate the second law efficiency of the air preheater in Example 10.15 when the exhaust exit temperature is decreased<br />

from 400.°C to 350.°C. Assume all the other variables (except T 4 ) remain unchanged. Answer: ε HX<br />

= 24.0%.<br />

46. The mass flow rates in Example 10.15 are changed from 0.800 kg/s to _m exhaust = 0:900 kg=s and _m air = 0:700 kg=s:<br />

Assuming all the other variables remain unchanged, determine the new second law thermal efficiency of the air<br />

preheater. Answer: ε HX<br />

= 18.4%.<br />

If the hot and cold fluids mix inside the heat exchanger (see Figure 10.20b), then the second law availability<br />

efficiency becomes<br />

Second law efficiency of a heat exchanger in which the hot and cold fluids mix<br />

ε mixing HX<br />

= ð1 − yÞða f 3 − a f 2 Þ<br />

yða f 1 − a f 3 Þ<br />

(10.37)<br />

where y is the hot mass fraction defined as y = _m H / _m m = _m 1 / _m 3 :

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!