05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

16.10 Nozzle and Diffuser Efficiencies 683<br />

■<br />

The nozzle’s discharge coefficient C d is determined from Eq. (16.41) as<br />

C d =<br />

ðρAVÞ actual<br />

=<br />

ðρAVÞ isentropic<br />

ðρ e V e Þ actual<br />

ðρ e V e Þ isentropic<br />

Now,<br />

ðρ exit Þ actual = p exit /RT exit =<br />

370:4 kN/m 2<br />

= 0:686 kg/m3<br />

½2:077 kN.m/ ðkg.KÞŠð260:1KÞ Since the flow is choked, M exit = 1.0, and the isentropic exit temperature and density can be determined from<br />

Eqs. (16.18) and (16.20) as<br />

and<br />

ðT exit Þ s = T = T os ½2/ðk + 1ÞŠ = ð283:7Þ½2/2:67Š = 212:5K<br />

ρ exit<br />

ð Þ s = ρ os ½2/ ðk + 1ÞŠ 1/ðk–1Þ = ðp os /RT os Þ½2/ ðk + 1Þ<br />

Š 1/ðk–1Þ<br />

ð456:2 kN/m 2 Þð2/2:67Þ 1/0:67<br />

=<br />

= 0:503 kg/m3<br />

½2:077 kN.m/ ðkg.KÞŠð283:7 KÞ and<br />

p<br />

ðV exits Þ s = c exit j s = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

kg c RT ð c Þj s<br />

p<br />

= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

ð1:67Þð1Þ½2077 m 2 /s ð<br />

2 . KÞŠð212:5 KÞ<br />

= 859 m/s<br />

then,<br />

ð0:686 kg/m3Þð474:8 m/sÞ<br />

C d =<br />

ð0:503 kg/m 3<br />

= 0:754<br />

Þð859 m/sÞ<br />

Exercises<br />

38. Your technician reports that there was an error in the sensor used to measure the nozzle exit velocity in Example 16.14.<br />

The correct exit velocity is 426.3 m/s, not 474.8 m/s. Determine the new values for the nozzle’s efficiency, velocity<br />

coefficient, and discharge coefficient, assuming all the other variables remain unchanged. Answer: η N = 0.772,<br />

C v = 0.878, and C d = 0.677.<br />

39. Oops, the technician in charge of the nozzle test in Example 16.14 now tells you that the velocity sensor reading is<br />

correct, it is the exit temperature sensor reading that was in error. The correct nozzle exit temperature is 271.5 K, not<br />

260.1 K. Determine the new values for the nozzle’s efficiency, velocity coefficient, and discharge coefficient, assuming all<br />

the other variables remain unchanged. Answer: η N = 0.957, C v = 0.978, and C d = 0.722.<br />

40. The nozzle in Example 16.14 is retested using air instead of helium. The same inlet conditions are used, but the<br />

following new exit conditions are measured: V exit = 190.1 m/s, p exit = 430.3 kPa, and T exit = 270.5 K. Determine the new<br />

values for the nozzle’s efficiency, velocity coefficient, and discharge coefficient under the air test. Answer: η N = 0.444,<br />

C v = 0.666, and C d = 0.964.<br />

The function of a diffuser, on the other hand, is to convert kinetic energy into pressure. Therefore, we define its<br />

efficiency η D as<br />

η D =<br />

Isentropic enthalpy increase at the actual exit stagnation pressure<br />

Inlet kinetic energy<br />

= h es − h inlet<br />

Vinlet 2 /2g ð cÞ = h es − h inlet<br />

h oi − h inlet<br />

where h es is the enthalpy at the actual exit stagnation pressure but at the same entropy as the inlet state (see<br />

Figure 16.25).<br />

For an ideal gas, the diffuser efficiency becomes<br />

η D = c pðT es − T inlet Þ<br />

V 2 inlet /ð2g cÞ<br />

= T inletðT es /T inlet − 1Þ<br />

V 2 inlet /ð2g cc p Þ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!