05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16.4 The Mach Number 659<br />

Since for ideal gases c p − c v = R and k = c p /c v ,wecanwritec p = R + c v = kR/ðk−1Þ: Also, from Eq. (16.10), we<br />

find that R = c 2 /ðkg c TÞ: Then, the equations for the isentropic stagnation temperature, pressure, and density<br />

(Eqs. (16.2), (16.3), and (16.4)) for an ideal gas become<br />

T os<br />

T = 1 + V2 /ð2g c c p TÞ = 1 + k − 1<br />

2 M2 (16.12)<br />

and<br />

p<br />

<br />

os<br />

p = 1 + k − 1 k/ðk−1Þ<br />

2 M2<br />

(16.13)<br />

ρ<br />

<br />

os<br />

ρ = 1 + k − 1 1/ðk−1Þ<br />

2 M2<br />

(16.14)<br />

Table C.18 in Thermodynamic Tables to accompany <strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong> contains tabulated values of<br />

T/T os , p/p os ,andρ/ρ os for air ðk = 1:40Þ for various values of M. These tabulations were made using Eqs.<br />

(16.12), (16.13), and (16.14) and may be used in place of these equations when convenient. Table 16.2 lists<br />

various values of k = c p /c v and Figure 16.6 shows k at various pressures.<br />

Table 16.2 Typical Values of the Specific Heat Ratio k<br />

Gas<br />

k = c p /c v<br />

Monatomic<br />

Argon, helium, neon, xenon, etc. 1.67<br />

Diatomic<br />

Air 1.40<br />

Nitrogen 1.40<br />

Oxygen 1.39<br />

Carbon monoxide 1.40<br />

Hydrogen 1.40<br />

Triatomic<br />

Carbon dioxide 1.29<br />

Sulfur dioxide 1.25<br />

Isentropic exponent, k<br />

1.33<br />

1.32<br />

1.31<br />

1.30<br />

1.29<br />

1.28<br />

1.27<br />

1.26<br />

1.25<br />

1.24<br />

1.23<br />

1.22<br />

400°F<br />

600°F<br />

800°F<br />

1000°F<br />

1200°F<br />

1400°F<br />

1600°F<br />

1800°F<br />

2000°F<br />

1.21<br />

1.20<br />

1 10 100 1000<br />

Pressure, psia<br />

FIGURE 16.6<br />

The variation in the isentropic exponent k = c p /c v of steam with pressure and temperature.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!