05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 19<br />

Introduction to Coupled Phenomena<br />

CONTENTS<br />

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763<br />

19.2 Coupled Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763<br />

19.3 Linear Phenomenological Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765<br />

19.4 Thermoelectric Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767<br />

19.4.1 The Seebeck Effect . ..........................................................767<br />

19.4.2 The Peltier Effect . . ..........................................................768<br />

19.4.3 The Kelvin Effect. . . ..........................................................769<br />

19.4.4 The Fourier Effect . . ..........................................................769<br />

19.4.5 The Joule Effect . . . ..........................................................770<br />

19.4.6 The Ohm Effect ..............................................................770<br />

19.5 Thermomechanical Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776<br />

19.5.1 Zero Heat Transfer . ..........................................................779<br />

19.5.2 Zero Temperature Gradient. ....................................................779<br />

19.5.3 Zero Pressure Gradient . . ......................................................780<br />

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783<br />

19.1 INTRODUCTION<br />

Physical phenomena are generally considered independent of each other. However, phenomenon can become<br />

coupled whenever the presence of one physical phenomenon induces one or more other physical phenomena<br />

to occur simultaneously. For example, the heat transport of energy through a system can induce a flow of electrical<br />

energy under certain circumstances; similarly, the flow of electrical energy can induce the flow of heat. This<br />

particular coupling is called the thermoelectric effect. Since energy is always conserved, in this case, some of the<br />

thermal energy is converted directly into electrical energy by an internal mechanism. The energy conversion efficiency<br />

from thermal energy directly into electrical energy is normally quite low; however, the reverse energy conversion<br />

process (from electrical to thermal energy) can be 100% efficient. Some of the more common types of<br />

direct energy conversion coupled phenomena are shown later in Tables 19.1 and 19.2. Notice that most of these<br />

couplings have been known for a very long time.<br />

19.2 COUPLED PHENOMENA<br />

Coupled phenomena have the potential for future technological utilization as important direct energy conversion<br />

processes. Today, they are used mainly in sensors to produce low-level electrical signals that are proportional<br />

to the magnitude of the other phenomenon present. For example, the thermoelectric effect is commonly<br />

used to produce a voltage proportional to the local temperature that can be read by an instrument or a computer.<br />

Such a device is called a thermocouple, and it is used as a temperature sensor.<br />

<strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. DOI: 10.1016/B978-0-12-374996-3.00019-1<br />

© 2011 Elsevier Inc. All rights reserved. 763

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!