05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

686 CHAPTER 16: Compressible Fluid Flow<br />

5. The velocity of sound c in an ideal gas:<br />

c ideal<br />

gas<br />

p<br />

= ffiffiffiffiffiffiffiffiffiffiffiffi<br />

kg c RT<br />

6. The stagnation state properties in terms of the Mach number:<br />

T os<br />

T<br />

= 1 + k−1<br />

2 M2 ,<br />

p<br />

<br />

os<br />

p = 1 + k − 1 k/ðk−1Þ, ρ<br />

<br />

os<br />

2 M2<br />

ρ = 1 + k−1 1/ðk−1Þ<br />

2 M2<br />

7. The properties at the throat of a choked flow nozzle (denoted by an *):<br />

8. The choked flow mass flow rate equations:<br />

k/ðk–1Þ <br />

T 2<br />

= T os , p 2<br />

= p os , ρ 2<br />

= ρ<br />

k + 1<br />

k + 1<br />

os<br />

k + 1<br />

1/2<br />

_m max /A kg<br />

<br />

= p c k + 1<br />

os<br />

2<br />

RT os<br />

ðk + 1Þ/2ð1 − kÞ<br />

and, for air (k = 1.40) in the <strong>Engineering</strong> English units system,<br />

<br />

ð _m max /A Þ air = 0:532 lbm pffiffiffi<br />

<br />

<br />

. R<br />

os<br />

pffiffiffiffiffiffi<br />

lbf .s T os<br />

1/ðk−1Þ<br />

where p ffiffiffi<br />

_m max is in lbm/s, A* isinin 2 , p os is in psia, T os is in R, and the constant 0.532 has units of<br />

lbm. R /ðlbs .sÞ: For air in the SI units system,<br />

<br />

ð _m max /A Þ air<br />

= 0:0404 kg pffiffiffi<br />

<br />

. K<br />

os<br />

pffiffiffiffiffiffi<br />

N.s T os<br />

where p ffiffiffi<br />

_m max is in kg/s, A* isinm 2 , p os is in N/m 2 , T os is in K, and the constant 0.0404 has units of<br />

kg. K /ðN .sÞ:<br />

9. The general cross-sectional area ratio for a supersonic nozzle at its maximum flow rate:<br />

and, for air (k = 1.40), this reduces to<br />

A/A = 1 M<br />

<br />

2<br />

k + 1<br />

1 + k−1 <br />

2 M2<br />

ðk+1Þ/2ðk−1Þ<br />

ðA/A Þ air<br />

= 1 <br />

1 + 0:2M 2 3<br />

M 1:2<br />

10. Thermodynamic property relations across a shock wave, where the subscript x denotes the upstream (M x >1)<br />

and the subscript y denotes downstream conditions (M y < 1):<br />

x M x<br />

p ffiffiffiffiffi = yM y<br />

p ffiffiffiffi ,<br />

T x<br />

T y<br />

M 2 y = ðk−1ÞM2 x + 2<br />

2kM 2 x + 1 − k<br />

1 + k−1<br />

T x<br />

=<br />

2 M2 y<br />

T y<br />

1 + k−1 ,<br />

2 M2 x<br />

ðfor M x ≥ 1Þ<br />

p x<br />

= 1 + kM2 y<br />

p y 1 + kM 2 ,<br />

x<br />

In the last expression M x and M y can be interchanged if M y is known and M x is the unknown.<br />

11. The nozzle efficiency η N , velocity coefficient C v , and discharge coefficient C d :<br />

ðk − 1Þ<br />

ðV exit /c inlet Þ 2<br />

η N =<br />

2<br />

1 − ðp exit /p inlet Þ , C p ðk−1Þ/k v = ffiffiffiffiffi η N,<br />

Cd =<br />

12. The diffuser efficiency η D and pressure recovery coefficient C p :<br />

η D =<br />

_m actual<br />

_m isentropic<br />

=<br />

ðρAVÞ<br />

actua1<br />

ðρAVÞ isentropic<br />

<br />

1 + k − 1 <br />

2 M2 inlet ðp ose /p osi Þ ðk−1Þ/k − 1 ð<br />

ðk−1ÞM 2 inlet /2 , C p = p exitÞ actual<br />

– p inlet<br />

p osi – p inlet

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!