05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

15.7 Heat of Reaction 611<br />

Then,<br />

h P ° LHV = −393:522 + 2ð − 241:827Þ + 0 = −877:176 MJ/kgmole CH 4<br />

and<br />

h P ° HHV = −393:522 + 2ð −285:838Þ + 0 = −965:198 MJ/kgmole CH 4<br />

Finally,<br />

LHV = ðq r ° Þ LHV<br />

= h P ° LHV − h R°= −877:176 − ð−74:873Þ<br />

= −802:30 MJ/kgmole CH 4<br />

and<br />

HHV = ðq r ° Þ HHV<br />

= h P ° HHV − h R°= −965:198 − ð−74:873Þ<br />

= −890:33 MJ/kgmole CH 4<br />

Note that this HHV is essentially the same as that listed in Table 15.2 for methane and that the HHV can be calculated from<br />

the LHV using Eq. (15.12) as<br />

<br />

<br />

HHV = LHV −<br />

n H2O<br />

n fuel<br />

ðh fg<br />

°Þ = LHV −<br />

H2O n H2O<br />

n fuel<br />

ð44:00 MJ/kgmole H 2 OÞ<br />

<br />

<br />

= −802:3 MJ/kgmole CH 4 − 2:00 kgmole H 2O<br />

1:00 kgmole CH 4<br />

ð44:00 MJ/kgmole H 2 OÞ<br />

= −890:3 MJ/kgmole CH 4<br />

Exercises<br />

22. Use the methods of Example 15.8 to determine the higher heating value (HHV) of acetylene gas, C 2 H 2 (g).<br />

Answer: HHV C2H2ðgÞ = −1299:6MJ=kgmole of C 2 H 2 (g).<br />

23. Use the technique presented in Example 15.8 to determine the lower heating value (LHV) of propane gas, C 3 H 8 (g).<br />

Answer: LHV C3H8ðgÞ = −2044:0MJ=kgmole of C 3 H 8 (g).<br />

24. Repeat Example 15.8 for n-butane gas, C 4 H 10 (g). Answer: HHV C4H10ðgÞ = −2877:1MJ=kgmole of C 4 H 10 (g),<br />

LHV C4H10ðgÞ = −2657:1MJ=kgmole of C 4 H 10 (g).<br />

When the reactants or products are not at the standard reference state, then their enthalpies are determined from<br />

Hess’s law by adding to the standard reference state enthalpies the change in enthalpy between the actual temperature<br />

and pressure and the standard reference state temperature and pressure. Normally, we can ignore the<br />

effect of pressure on enthalpy, so that the molar enthalpy of any compound at temperature T and pressure p is<br />

hðT, pÞ, given by<br />

hðT, pÞ = h f °+½hðTÞ − hðT°ÞŠ (15.14)<br />

If the material can be considered to be an ideal gas with constant specific heats over the temperature range from<br />

the standard reference state temperature T° to the actual temperature T, then we can write<br />

hðT, pÞ = h°+c f p ðT − T° Þ (15.15)<br />

Otherwise, hðTÞ − hðT°Þ must be determined from a more accurate source, such as the gas tables in Thermodynamic<br />

Tables to accompany <strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong> (Table C.16c). Combining Eqs. (15.8), (15.9),<br />

(15.10), and (15.14) gives the general formula for the heat of reaction (or combustion) of a substance not at<br />

the standard reference state as<br />

q r = ∑<br />

P<br />

ðn i /n fuel<br />

Þ h f °+hðTÞ − hðT°Þ i −∑ R<br />

The use of Eq. (15.16) is illustrated in the following example.<br />

ðn i /n fuel Þ h f °+hðTÞ − hðT°Þ (15.16)<br />

i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!