05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Summary 353<br />

7. The general open system availability rate balance is given by Eq. (10.21) as<br />

∑ n<br />

i=1<br />

<br />

1 − T <br />

0<br />

T bi<br />

_Q i − _W +∑ _ma f − ∑<br />

inlet outlet<br />

<br />

_ma f + p 0<br />

_V − _I =<br />

dA<br />

dt<br />

<br />

system<br />

and the modified availability rate balance (MARB) for steady state, steady flow, single-inlet, singleoutlet,<br />

constant volume, isothermal boundary (SS, SF, SI, SO, CV, IB) open systems is given by<br />

Eq. (10.26) as<br />

<br />

1 − T 0<br />

T b<br />

_Q − _W + _m½ða f Þ in<br />

− ða f Þ out<br />

Š − _I = 0<br />

8. The second law efficiency (or effectiveness) is defined in Eq. (10.29) as<br />

ε =<br />

A desired<br />

result<br />

A initial or<br />

net input<br />

=<br />

_A desired<br />

result<br />

_A initial or<br />

net input<br />

9. The second law availability efficiency of a heat engine is given by Eq. (10.30) as<br />

ε HE =<br />

<br />

1 − T <br />

0<br />

T H<br />

_W<br />

<br />

_Q H − 1 − T 0<br />

T L<br />

<br />

j _Q L j<br />

which becomes ε HE = η T /η Carnot when T 0 = T L .<br />

10. The second law availability efficiency of a heat pump is given by Eq. (10.32) as<br />

ε HP =<br />

<br />

1 − T <br />

0 _Q<br />

T H<br />

H<br />

j _W in j<br />

<br />

= 1 − T <br />

0<br />

T H<br />

_Q H<br />

j _W in j<br />

!<br />

<br />

= 1 − T <br />

0<br />

COP actual<br />

T H heat pump<br />

which becomes ε HP = (COP) actual HP /(COP) Carnot HP when T 0 = T L .<br />

11. The second law availability efficiency of a refrigerator or air conditioner is given by Eq. (10.34) as<br />

ε R/AC =<br />

<br />

1 − T 0<br />

T L<br />

_Q L<br />

j _W in j<br />

<br />

= 1 − T <br />

0<br />

T L<br />

_Q L<br />

j _W in j<br />

!<br />

<br />

= 1 − T <br />

0<br />

COP actual<br />

T L ref or air cond<br />

which reduces to ε R/AC = (COP) actual R/AC /(COP) Carnot R/AC when T 0 = T H .<br />

12. The second law availability efficiency of a four flow stream nonmixing heat exchanger is given by<br />

Eq. (10.36) as<br />

ε nonmixing HX = _m Cða f 4 − a f 3 Þ<br />

_m H ða f 1 − a f 2 Þ<br />

and, for a three flow stream heat exchanger in which the fluids mix inside its boundaries, it is given by<br />

Eq. (10.37) as<br />

ε mixing HX = ð1 − yÞða f 3 − a f 2 Þ<br />

yða f 1 − a f 3 Þ<br />

where y is the hot mass fraction, y = _m hot / _m mixed :

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!