05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.3 Systems Undergoing Irreversible Processes 265<br />

Solution<br />

First, draw a sketch of the system (Figure 8.11).<br />

The unknowns here are, after 5 s have passed, (a) T 2 ,(b)U 2 – U 1 ,<br />

and (c) 1 (S P ) 2 ; the material is helium gas.<br />

The solutions to the first two parts of this problem can be found<br />

in Example 5.7 as<br />

T ∞ = 15.0°C<br />

0.100 m diameter<br />

System boundary<br />

1 (S P ) 2 = ?<br />

a. T 2 = 32.5°C.<br />

b. U 2 – U 1 = –0.039 kJ.<br />

The solution to part c can be found again by the indirect method<br />

(entropy balance) as follows. From Eq. (8.1), we have<br />

Z<br />

1ðS P Þ 2<br />

= mðs 2 − s ι Þ −<br />

Σ<br />

<br />

dQ<br />

T<br />

We can assume that helium behaves as an ideal gas, then since<br />

v 2 = v 1 = constant, we can use Eq. (7.36) to produce<br />

act<br />

FIGURE 8.11<br />

Example 8.11.<br />

h = 3.50 W/(m 2 .K)<br />

Helium<br />

s 2 − s 1 = c v ln T 2<br />

+ R ln v 2<br />

T 1 v 1<br />

32:5 + 273:15<br />

= ½3:123 kJ/ ðkg⋅KÞŠln 200: + 273:15 + 0<br />

= −1:37 kJ/ ðkg⋅KÞ<br />

and, from Example 5.7, we have<br />

so<br />

and<br />

_Q = −hAðT s − T ∞ Þ = dQ<br />

dt<br />

dQ = −hAðT s − T ∞ Þdt<br />

dQ<br />

= dQ = −hA½ðT s − T ∞ Þ/T ∞ Šdt<br />

T b T ∞<br />

wherewehavesetT b = T ∞ (i.e., we put the system boundary slightly outside the sphere itself). Also, in Example 5.7, we<br />

discover that<br />

where T 1 = T s evaluated at t = 0. Then,<br />

Z<br />

<br />

T s = T ∞ + ðT 1 − T ∞ Þexp − hAt<br />

<br />

mc v<br />

Σ<br />

<br />

dQ<br />

T b<br />

Now, from Example 5.7, we have the following numerical values:<br />

act<br />

Z 5s<br />

<br />

T<br />

= −hA s − T ∞<br />

dt<br />

0 T ∞<br />

<br />

<br />

T<br />

= mc 1 − T ∞<br />

v exp − hAt<br />

<br />

5s<br />

T ∞<br />

mc v 0<br />

m = 7:46 × 10 −5 kg<br />

c v = 3:123 kJ/kg.RK<br />

T 1 = 200:°C = 473:15 K<br />

T ∞ = 15:0°C = 288:15 K<br />

and hA/(mc v ) = 0.472s –1 . Substituting these values into the preceding integration result gives<br />

Z <br />

dQ<br />

= −1:35 × 10 −4 kJ/K<br />

T b<br />

then<br />

1ðS P<br />

Σ<br />

Þ 2<br />

= ð7:46 × 10 −5 kg<br />

act<br />

= 3:32 × 10 −5 kJ/K = 0:0332 J/K<br />

Þ½−1:365 kJ/ ðkg⋅KÞŠ− ð−1:35 × 10 −4 kJ/KÞ<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!