05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 5<br />

First Law Closed System Applications<br />

CONTENTS<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

5.2 Sealed, Rigid Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

5.3 Electrical Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

5.4 Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

5.5 Incompressible Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

5.6 Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

5.7 Piston-Cylinder Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

5.8 Closed System Unsteady State Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

5.9 The Explosive Energy of Pressure Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

5.1 INTRODUCTION<br />

In this chapter, we present a series of detailed engineering analyses of the application of the first law of thermodynamics<br />

to closed systems. This material demonstrates good thermodynamic problem solving technique<br />

through a variety of worked examples. In the first three examples that follow, the numbered steps in the solution<br />

are the same as the steps shown in Figure 4.21. As we continue with the examples and the reader becomes<br />

more familiar with the technique, we condense the solutions by omitting the description of each solution step.<br />

In so doing, we also introduce some flexibility into the technique.<br />

SUMMARY OF THE THERMODYNAMIC PROBLEM SOLVING TECHNIQUE<br />

Begin by carefully reading the problem statement completely through.<br />

Step 1. Make a sketch of the system and put a dashed line around the system boundary.<br />

Step 2. Identify the unknown(s) and write them on your system sketch.<br />

Step 3. Identify the type of system (closed or open) you have.<br />

Step 4. Identify the process that connects the states or stations.<br />

Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.<br />

Step 6. Algebraically solve for the unknown(s).<br />

Step 7. Calculate the value(s) of the unknown(s).<br />

Step 8. Check all algebra, calculations, and units.<br />

Sketch ! Unknowns ! System ! Process ! Equations ! Solve ! Calculate ! Check<br />

<strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. DOI: 10.1016/B978-0-12-374996-3.00005-1<br />

© 2011 Elsevier Inc. All rights reserved. 147

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!