27.12.2012 Views

ARUP; ISBN: 978-0-9562121-5-3 - CMBBE 2012 - Cardiff University

ARUP; ISBN: 978-0-9562121-5-3 - CMBBE 2012 - Cardiff University

ARUP; ISBN: 978-0-9562121-5-3 - CMBBE 2012 - Cardiff University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 1 2<br />

the volumetric part of the strain energy potential w : ( ) ( )<br />

⎡ ⎤<br />

f J : = J 1 ln J<br />

D ⎢<br />

− −<br />

⎣ 2<br />

⎥<br />

⎦ .<br />

Description of the viscoelastic behaviour of gluteal tissue is approached using the<br />

linear-viscoelastic theory valid for finite deformations as introduced by Simo (1987).<br />

Within the decomposition of the KIRCHHOFF stress tensor ττττ<br />

D<br />

( t)<br />

= ττττ ( t)<br />

ττττ ( t)<br />

Η<br />

ττττ +<br />

the volumetric and deviatoric parts, H<br />

ττττ and D<br />

ττττ , read<br />

H H<br />

0<br />

t<br />

∫ κ<br />

t′=<br />

0<br />

H<br />

0<br />

( ) : = ( ) + ( ) ( − )<br />

ττ ττ t ττ ττ t t′ τ ττ<br />

τ t t′ dt′<br />

D D<br />

0<br />

(4) t<br />

∫<br />

t′=<br />

0<br />

t<br />

D<br />

0<br />

t<br />

T<br />

−1 −<br />

( ) ≡ ( ) + p⋅⋅ γ ( ) F ( − ) ⋅ ( − ) ⋅ F ( − )<br />

ττ ττ t ττ ττ t t′ t t′ τ ττ<br />

τ t t′ t t′ dt′<br />

.<br />

In (3) the KIRCHHOFF stresses H<br />

0<br />

In (3) and (4),<br />

( 4)<br />

⋅<br />

( )<br />

H ∂f<br />

J<br />

ττττ 0 = J I and<br />

∂J<br />

( 4)<br />

whereby I ⋅A<br />

= A<br />

ττττ and D<br />

ττττ at steady state are defined by<br />

0<br />

( C,H i )<br />

(2)<br />

(4) ⎡ ∂w<br />

⎤<br />

D T<br />

ττττ 0 = p⋅⋅ ⎢2F ⋅ ⋅ F ⎥ . (4)<br />

⎢⎣ ∂C<br />

⎥⎦<br />

p is the fourth-order spatial deviator operator with p : = I − ( 1/<br />

3)II<br />

1 and ⋅⋅ = ( tr )<br />

−1<br />

( t′<br />

) : = F ( t′<br />

) ⋅ F ( t)<br />

II A A I apply for arbitrary second order tensors A, and<br />

F t<br />

is the relative deviatoric deformation gradient. The shear and bulk<br />

relaxation functions are commonly based on a generalized MAXWELL-model and are<br />

given by<br />

⎡ NG<br />

⎛ t<br />

− ⎞⎤<br />

G<br />

i<br />

( ) ⎢<br />

0 1 ⎜ τ<br />

G t = G − i 1− e ⎟⎥<br />

⎢ ∑ g<br />

⎥<br />

i= 1 ⎜ ⎟<br />

⎣ ⎝ ⎠⎦<br />

Further, with regard to Gi G0g<br />

i<br />

γ read<br />

and shear modulus ( t)<br />

( )<br />

0<br />

and ( )<br />

( 4)<br />

( 4)<br />

⎡ Nκ<br />

⎛ t<br />

− ⎞⎤<br />

K<br />

⎢ i<br />

0 1 ⎜ τ<br />

K t = K − i 1− e ⎟⎥<br />

⎢ ∑ k<br />

. (5)<br />

⎥<br />

i= 1 ⎜ ⎟<br />

⎣ ⎝ ⎠⎦<br />

:= (i = 1, 2,…..) the time-dependent bulk modulus κ ( t)<br />

NK<br />

i<br />

t<br />

−<br />

K<br />

τi<br />

K<br />

i= 1 τi<br />

K̇ t k<br />

κ ( t) : = = −∑ e<br />

K<br />

and γ ( )<br />

( )<br />

0<br />

NG<br />

i<br />

t<br />

−<br />

G<br />

τi<br />

G<br />

i= 1 τi<br />

Ġ t g<br />

t : = = −∑ e<br />

G<br />

1<br />

. (6)<br />

In (5)1 and (5)2, 0 G and K 0 are the instantaneous shear and bulk modulus,<br />

respectively. The- i g , K<br />

ki -and-τ i -and- G<br />

τi -are material parameters to be calibrated using<br />

creep or relaxation test data. Inserting (1) into (4) and with regard to (2) and (3), the<br />

total KIRCHHOFF stress tensor for linear-viscoelastic isotropic materials derives to<br />

(3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!