27.12.2012 Views

ARUP; ISBN: 978-0-9562121-5-3 - CMBBE 2012 - Cardiff University

ARUP; ISBN: 978-0-9562121-5-3 - CMBBE 2012 - Cardiff University

ARUP; ISBN: 978-0-9562121-5-3 - CMBBE 2012 - Cardiff University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In Fig.3, the distribution of the aggregated platelets along the lesion is depicted. By a<br />

good comparison with all previous works, the same pattern of distribution was achieved<br />

as in [2,5,12].<br />

6. Conclusion<br />

In conclusion, it can be pointed out that the model incorporates the important features of<br />

the previous models proposed in [2,5,6] and added more physiological concepts such as<br />

the CDR equation and the drag-dependent detachment function. In this study, we also<br />

implemented a better approach to shed light on colloidal characteristics of blood<br />

components in microcirculation.<br />

8. REFERENCES<br />

1. High, KA, Roberts, HR, “Molecular Basis of Thrombosis and Hemostasis”, 1995,<br />

Taylor and Fransis, pp. 35-50<br />

2. Sorensen, E. N., Burgreen, G. W., Wagner, W. R., & Antaki, J. F. (1999).<br />

Computational simulation of platelet deposition and activation: I. Model<br />

development and properties. Ann. Biom. Eng., 27(4), 436-48.<br />

3. Longest, W. P., & Kleinstreuer, C. (2003). Comparison of blood particle<br />

deposition models for non-parallel flow domains, J. of Biomech.,36(3), 421-430.<br />

4. Ouared, R., & Chopard, B. (2005). Lattice Boltzmann Simulations of Blood Flow:<br />

Non-Newtonian Rheology and Clotting Processes. J. Stat.Phys,121(1-2), 209-221.<br />

5. Filipovic, N., Kojic, M., & Tsuda, a. (2008). Modelling thrombosis using<br />

dissipative particle dynamics method. Philosophical transact. Series A, Math.,<br />

phys., and eng. sciences, 366(1879), 3265-79<br />

6. Pivkin, I. (2006). Algorithms for Continuum and Atomistic Modeling of Blood<br />

Platelet Phenomena, Brown.<br />

7. Groot, R. D., & Warren, P. B. (1997). Dissipative particle dynamics: Bridging the<br />

gap between atomistic and mesoscopic simulation, J. of Chem. Phys., 107(11),<br />

4423.<br />

8. Pivkin, I. V., & Karniadakis, G. E. (2005). A new method to impose no-slip<br />

boundary conditions in dissipative particle dynamics. J. Comp. Phys, 207(1), 114-<br />

128.<br />

9. Whittle, M., Murray, B. S., & Dickinson, E. (2000). Simulation of Colloidal<br />

Particle Scattering: Sensitivity to Attractive Forces. J. col. and interf. Sci., 225(2),<br />

367-377.<br />

10. Chen, S., Phan-Thien, N., Khoo, B. C., & Fan, X. J. (2006). Flow around spheres<br />

by dissipative particle dynamics. Phys. of Fluids, 18(10), 103605<br />

11. W A Khan, J R Culham, M. M. Y. (2005). Fluid Flow Around and Heat Transfer<br />

From an Infinite Circular Cylinder. J. Heat Trans., 127(July).<br />

12. Hubbell, J. A., & McIntire, L. V. (1986). Visualization and analysis of mural<br />

thrombogenesis on collagen, polyurethane and nylon. Biomaterials, 7(5), 354–360.<br />

13. Goodman, P. D., Barlow, E. T., Crapo, P. M., Mohammad, S. F., & Solen, K. a.<br />

(2005). Computational Model of Device-Induced Thrombosis and<br />

Thromboembolism. Ann. Biom. Eng., 33(6), 780-797.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!