28.12.2012 Views

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PARALLEL SESSION 2C: QUANTIFICATION AND REDUCTION OF UNCERTAINTY 8 th Int. Conference on <strong>LCA</strong> <strong>in</strong> the<br />

Agri-<strong>Food</strong> Sector, 1-4 Oct <strong>2012</strong><br />

204<br />

Influence of scenario uncerta<strong>in</strong>ty <strong>in</strong> agricultural <strong>in</strong>puts on <strong>LCA</strong><br />

results for agricultural production systems<br />

Kiyotada Hayashi 1,* , Naoki Mak<strong>in</strong>o 2 , Koichi Shobatake 2 , Sh<strong>in</strong>go Hokazono 1<br />

1 National Agriculture and <strong>Food</strong> Research Organisation<br />

2 TCO2 Co. Ltd.<br />

Correspond<strong>in</strong>g author. E-mail: hayashi@affrc.go.jp<br />

ABSTRACT<br />

Practical applications of life cycle assessment (<strong>LCA</strong>) to agricultural production systems necessitate articulat<strong>in</strong>g uncerta<strong>in</strong>ties caused<br />

by scenario <strong>in</strong>d<strong>et</strong>erm<strong>in</strong>acy, because practitioners do not have sufficient knowledge about agricultural <strong>in</strong>put production processes.<br />

However, current understand<strong>in</strong>g about scenario uncerta<strong>in</strong>ties is still limited on account of <strong>in</strong>sufficient knowledge. Here, we propose a<br />

m<strong>et</strong>hod to quantify scenario uncerta<strong>in</strong>ty <strong>in</strong> agricultural <strong>in</strong>puts and to assess the uncerta<strong>in</strong>ty <strong>in</strong> comparative <strong>LCA</strong> of agricultural production<br />

systems. We formulate mathematical expressions about uncerta<strong>in</strong>ty <strong>in</strong>tervals due to scenario <strong>in</strong>d<strong>et</strong>erm<strong>in</strong>acy and derive uncerta<strong>in</strong>ty<br />

<strong>in</strong>tervals for conventional, environmentally friendly, and organic rice production systems <strong>in</strong> Japan. Scenario uncerta<strong>in</strong>ty <strong>in</strong><br />

chemical fertiliser production is analysed as an example. The results <strong>in</strong>dicate that uncerta<strong>in</strong>ty <strong>in</strong>tervals are useful <strong>in</strong> understand<strong>in</strong>g the<br />

stability of results. The m<strong>et</strong>hodology proposed <strong>in</strong> this study can be further developed as a technique to deal with uncerta<strong>in</strong>ty and<br />

<strong>in</strong>stability <strong>in</strong> <strong>LCA</strong> of agricultural production systems.<br />

Keywords: scenario uncerta<strong>in</strong>ty, agricultural <strong>in</strong>puts, adaptation, comparative <strong>LCA</strong>, <strong>in</strong>ventory analysis<br />

1. Introduction<br />

Uncerta<strong>in</strong>ty analysis us<strong>in</strong>g the pedigree matrix for data quality tog<strong>et</strong>her with Monte Carlo simulations is a<br />

common practice <strong>in</strong> life cycle assessment (<strong>LCA</strong>), and several <strong>LCA</strong> software products provide simulation<br />

functions. Because of certa<strong>in</strong> special characteristics of agriculture, uncerta<strong>in</strong>ties <strong>in</strong> param<strong>et</strong>ers such as crop<br />

yield and direct field emissions are <strong>in</strong>tegrated <strong>in</strong>to the <strong>LCA</strong> for agriculture (Bass<strong>et</strong>-Mens <strong>et</strong> al., 2006). In<br />

addition, uncerta<strong>in</strong>ties attributed to a wide vari<strong>et</strong>y of management practices and uncerta<strong>in</strong>ties <strong>in</strong> the relationship<br />

b<strong>et</strong>ween management practices and environmental impacts have been estimated us<strong>in</strong>g statistical resampl<strong>in</strong>g<br />

(nonparam<strong>et</strong>ric bootstrapp<strong>in</strong>g) (Hayashi, 2011).<br />

Although these studies ma<strong>in</strong>ly clarified uncerta<strong>in</strong>ties <strong>in</strong> models and param<strong>et</strong>ers used to conduct <strong>LCA</strong>,<br />

practical applications of <strong>LCA</strong> to agricultural production systems necessitate articulat<strong>in</strong>g uncerta<strong>in</strong>ties caused<br />

by scenario <strong>in</strong>d<strong>et</strong>erm<strong>in</strong>acy, because practitioners do not have sufficient knowledge of the d<strong>et</strong>ails <strong>in</strong> agricultural<br />

<strong>in</strong>put production processes (background processes of agricultural production). For example, farmers <strong>in</strong><br />

general do not know what k<strong>in</strong>d of technologies are used for mak<strong>in</strong>g chemical fertilisers and where fertiliser<br />

factories are located. In other words, decision makers or analysts face decision problems under <strong>in</strong>sufficient<br />

knowledge.<br />

However, current understand<strong>in</strong>g about scenario uncerta<strong>in</strong>ties is still limited <strong>in</strong> <strong>LCA</strong> of agricultural production<br />

systems as a result of <strong>in</strong>sufficient knowledge. Therefore, this study establishes a m<strong>et</strong>hod to quantify<br />

scenario uncerta<strong>in</strong>ty <strong>in</strong> agricultural <strong>in</strong>puts and assesses the <strong>in</strong>fluence of this uncerta<strong>in</strong>ty on a comparative<br />

<strong>LCA</strong> of agricultural production systems.<br />

2. M<strong>et</strong>hods<br />

2.1. Classification of uncerta<strong>in</strong>ties<br />

We classify uncerta<strong>in</strong>ty us<strong>in</strong>g a tri-partition for the uncerta<strong>in</strong>ty typology, namely param<strong>et</strong>er, model, and<br />

scenario uncerta<strong>in</strong>ty. Param<strong>et</strong>er uncerta<strong>in</strong>ty reflects our <strong>in</strong>compl<strong>et</strong>e knowledge about the true value of a param<strong>et</strong>er<br />

(Huijbregts <strong>et</strong> al., 2003) and is related to <strong>in</strong>ventory data and characterisation and weight<strong>in</strong>g factors.<br />

Common sources of param<strong>et</strong>er uncerta<strong>in</strong>ty are imprecise measurements, <strong>in</strong>compl<strong>et</strong>e or outdated measurements,<br />

and no measurements (lack of data) (Huijbregts, 1998). Model uncerta<strong>in</strong>ty concerns assumptions and<br />

simplifications that lead to uncerta<strong>in</strong>ty about the validity of the model’s predictions for a real world situation<br />

(Huijbregts <strong>et</strong> al., 2003). An important example of model uncerta<strong>in</strong>ty is the loss of spatial and temporal characteristics<br />

<strong>in</strong> <strong>in</strong>ventory analysis. Scenario uncerta<strong>in</strong>ty was orig<strong>in</strong>ally termed ‘uncerta<strong>in</strong>ty due to choices’<br />

(Huijbregts, 1998) and ‘decision rule uncerta<strong>in</strong>ty’ (Hertwich <strong>et</strong> al., 2000), because it refers to uncerta<strong>in</strong>ty<br />

caused by normative choices on functional units and system boundaries <strong>in</strong> goal and scope def<strong>in</strong>ition, allocation<br />

<strong>in</strong> <strong>in</strong>ventory analysis, and the number of impact categories and def<strong>in</strong>itions <strong>in</strong> impact assessment<br />

(Huijbregts <strong>et</strong> al., 2003). We extend the scope of scenario construction to scenario <strong>in</strong>d<strong>et</strong>erm<strong>in</strong>acy, which we<br />

encounter <strong>in</strong> practical situations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!