28.12.2012 Views

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PARALLEL SESSION 3B: PACKAGING 8 th Int. Conference on <strong>LCA</strong> <strong>in</strong> the<br />

Agri-<strong>Food</strong> Sector, 1-4 Oct <strong>2012</strong><br />

Figure 4. Effect of recycl<strong>in</strong>g loop number (q[1;3]) and collection rate (c = 50% ; 60% ; 75%) on the environmental<br />

impacts assessment of PET bottle waste treatment <strong>in</strong> Ile-de-<strong>France</strong> region. The unit of the y-axis is<br />

directly expressed <strong>in</strong> the unit of the considered impact.<br />

The effect of multiple recycl<strong>in</strong>g trips for PET bottles on the f<strong>in</strong>al result is analysed (Fig. 5). With the<br />

<strong>France</strong> param<strong>et</strong>ers, multiple recycl<strong>in</strong>g trips allow a reduction of abiotic depl<strong>et</strong>ion (resp. Acidification) of<br />

11.1% (resp.10.9%) more than if there is only a s<strong>in</strong>gle end-of-life. GWP decreases by only 3.4%. The effect<br />

of multiple recycl<strong>in</strong>g trips is significant from the third end-of-life (Fig. 5).<br />

Figure 5: Effect of the number of recycl<strong>in</strong>g loops on the f<strong>in</strong>al impacts.<br />

4. Discussion<br />

4.1. Evaluation of the recycl<strong>in</strong>g routes.<br />

First, it must be said that the three scenarios are <strong>in</strong> agreement with the literature. With the data used, either<br />

secondary or tertiary recycl<strong>in</strong>g is always preferable to thermal recycl<strong>in</strong>g. This is not surpris<strong>in</strong>g s<strong>in</strong>ce<br />

thermal recycl<strong>in</strong>g techniques were not created to treat PET (ADEME, 2002), and are more adapted to composite<br />

waste flow that cannot be sorted. However, the data used for the LCI of pyrolysis and hydrocrack<strong>in</strong>g<br />

could be outdated as underl<strong>in</strong>ed <strong>in</strong> Perug<strong>in</strong>i <strong>et</strong> al., 2005. Indeed, this range of recycl<strong>in</strong>g techniques suffers<br />

from a general lack of data concern<strong>in</strong>g environmental impacts as highlighted <strong>in</strong> Al-Salem <strong>et</strong> al., 2009. The<br />

hypothesis on hydrogen production is even not relevant <strong>in</strong> eco<strong>in</strong>vent: <strong>in</strong> this database used for our impact<br />

assessment, the hydrogen production is an average of different process, water electrolysis ma<strong>in</strong>ly, which is a<br />

non-sense or a cont<strong>in</strong>uous production. In reality, almost all <strong>in</strong>dustrial sites worldwide like ref<strong>in</strong>eries do use<br />

stream reform<strong>in</strong>g of natural gas followed by water gas shift for hydrogen production (Chaum<strong>et</strong>te, 1996;<br />

Raimbault, 1997; Yurum, 1995). Then, impacts assessment of hydrocrack<strong>in</strong>g is underestimated <strong>in</strong> our model,<br />

and those of pyrolyis are overestimated.<br />

284<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0<br />

-0,01<br />

-0,02<br />

-0,03<br />

-0,04<br />

-0,05<br />

0,03<br />

0,02<br />

0,01<br />

0<br />

-0,01<br />

-0,02<br />

-0,03<br />

-0,04<br />

Current situation Objective PREDMA<br />

-0,05q=1<br />

(c=50 %)<br />

q=3<br />

2014 (c=60 %)<br />

q= ∞<br />

0,04<br />

0,03<br />

0,02<br />

0,01<br />

0<br />

-0,01<br />

-0,02<br />

-0,03<br />

-0,05<br />

GWP/100, end-of-lives (kg CO2 eq)<br />

GWP/100, virg<strong>in</strong> production (kg CO2 eq)<br />

Acidification, end-of-lives (kg SO2 eq)<br />

Acidification, virg<strong>in</strong> production (kg SO2 eq)<br />

Abiotic depl<strong>et</strong>ion, end-of-lives (kg Sb eq)<br />

Objective PREDMA<br />

-0,04<br />

2019 (c=75 Abiotic %) depl<strong>et</strong>ion, virg<strong>in</strong> production (kg Sb eq)<br />

Current situation<br />

(c=50 %)<br />

Objective PREDMA<br />

2014 (c=60 %)<br />

Abiotic depl<strong>et</strong>ion, virg<strong>in</strong> production (kg Sb eq) Abiotic depl<strong>et</strong>ion, end-of-lives (kg Sb eq)<br />

Acidification, virg<strong>in</strong> production (kg SO2 eq) Acidification, end-of-lives (kg SO2 eq)<br />

GWP/100, virg<strong>in</strong> production (kg CO2 eq) GWP/100, end-of-lives (kg CO2 eq)<br />

Objective PREDMA<br />

2019 (c=75 %)<br />

GWP/100, end-of-live<br />

GWP/100, virg<strong>in</strong> prod<br />

Acidification, end-of-<br />

Acidification, virg<strong>in</strong> p<br />

Abiotic depl<strong>et</strong>ion, en<br />

Abiotic depl<strong>et</strong>ion, vir<br />

eq)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!