28.12.2012 Views

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GROUP 1, SESSION A: ANIMAL PRODUCTION SYSTEMS 8 th Int. Conference on <strong>LCA</strong> <strong>in</strong> the<br />

Agri-<strong>Food</strong> Sector, 1-4 Oct <strong>2012</strong><br />

33. A framework for susta<strong>in</strong>ability comparison of seafood supply<br />

cha<strong>in</strong>s<br />

Angel Avadí 1,* , Pierre Fréon 2<br />

1 UMR 212 EME, Institut de Recherche pour le Développement (IRD), Université Montpellier II, CRH, BP<br />

171, 34203, Sète, <strong>France</strong>, 2 UMR 212 EME, IRD, Centre de Recherche Halieutique Méditerranéenne <strong>et</strong><br />

Tropicale (CRH), BP 171, 34203, Sète, <strong>France</strong>, Correspond<strong>in</strong>g author. E-mail: angel.avadi@ird.fr<br />

The research, carried out <strong>in</strong> the context of the ANCHOVETA-SC project (http://anchov<strong>et</strong>asc.wikispaces.com),<br />

proposes a modell<strong>in</strong>g and susta<strong>in</strong>ability assessment framework for compar<strong>in</strong>g comp<strong>et</strong><strong>in</strong>g<br />

seafood supply cha<strong>in</strong>s based on common <strong>in</strong>puts, <strong>in</strong> terms of a selected <strong>in</strong>dicators focus<strong>in</strong>g on environmental<br />

and socio-economic performance, with emphasis on environmental and energy performance. The<br />

approach allows for comparison of alternative stock exploitation scenarios and transformation strategies.<br />

Comp<strong>et</strong><strong>in</strong>g seafood supply cha<strong>in</strong>s are modelled <strong>in</strong> terms of their material and energy flows and, from a life<br />

cycle perspective, several tools and approaches are comb<strong>in</strong>ed and applied to assess their susta<strong>in</strong>ability. <strong>LCA</strong><br />

is used for environmental impact assessment (<strong>in</strong>clud<strong>in</strong>g seafood-specific impact categories), but further<br />

analyses on energy efficiency and nutritional value of feed <strong>in</strong>gredients and seafood co-products are carried<br />

out. Basic socio-economic data is also compiled and used for estimat<strong>in</strong>g socio-economic performance by<br />

means of key <strong>in</strong>dicators. A trophic model of the exploited mar<strong>in</strong>e ecosystem sourc<strong>in</strong>g the studied systems is<br />

<strong>in</strong>tegrated with<strong>in</strong> the supply cha<strong>in</strong> model <strong>in</strong> order to capture the ecosystem-fishery <strong>in</strong>teractions. The result<strong>in</strong>g<br />

supply cha<strong>in</strong> model is implemented <strong>in</strong> a material flow modell<strong>in</strong>g tool. This framework thus extends the ecosystem/supply<br />

cha<strong>in</strong> coupled model proposed by Christensen <strong>et</strong> al. (2011) by account<strong>in</strong>g for biophysical<br />

flows. To test the framework, scenario comparisons of supply cha<strong>in</strong>s based on Peruvian anchov<strong>et</strong>a (Engraulis<br />

r<strong>in</strong>gens) fishmeal are carried out. Scenarios are generated by vary<strong>in</strong>g the fish<strong>in</strong>g stage, <strong>in</strong> terms of catches<br />

volumes of anchov<strong>et</strong>a (and its predators) and the <strong>in</strong>tended “fate” of land<strong>in</strong>gs (direct or <strong>in</strong>direct human consumption,<br />

served by different fle<strong>et</strong>s and deliver<strong>in</strong>g different f<strong>in</strong>al products/species to consumers).<br />

The material flow modell<strong>in</strong>g tool used proves useful for representation of <strong>in</strong>terdependent <strong>in</strong>dustrial processes<br />

(i.e. supply cha<strong>in</strong>s) as P<strong>et</strong>ri n<strong>et</strong>s (Fig. 1) and Sankey diagrams, as well as provid<strong>in</strong>g the programm<strong>in</strong>g environment<br />

required to code the required material, energy and mon<strong>et</strong>ary flows logic. <strong>LCA</strong> and other life cycle<br />

tools provided the data and m<strong>et</strong>hods for extend<strong>in</strong>g the material and energy flows analysis towards susta<strong>in</strong>ability<br />

assessment, <strong>in</strong> such a way that basic mass and energy flows are complemented with specific biophysical<br />

flows (e.g. energy/nutritional value of substances). Indicators used (Fig. 2; Table 1), scaled respect to a<br />

functional unit, are based on a) energy use: Cumulative Energy Demand; b) energy efficiency: edible prote<strong>in</strong><br />

EROI (Tyedmers 2000); c) seafood-specific impact categories: Biotic Resource Use approximated from the<br />

primary production appropriation of feed <strong>in</strong>gredients, especially fish-derived (Pauly & Christensen, 1995)<br />

and a related ecological footpr<strong>in</strong>t; and d) nutritional value for the consumer: prote<strong>in</strong>/lipid content of raw materials<br />

and co-products. Socio-economic factors considered are limited to the most accessible ones (employment,<br />

added value). Alternative exploitation scenarios along the whole ecosystem-supply cha<strong>in</strong> are obta<strong>in</strong>ed<br />

by coupl<strong>in</strong>g models: outputs from a published trophic model (Ecopath with Ecosim) of the Humboldt Current<br />

ecosystem are used as <strong>in</strong>puts of a material flow analysis model (Umberto). The coupled model, <strong>in</strong>dicators<br />

and communication devices are currently <strong>in</strong> progress.<br />

Conclusions derived from the model will be suitable for policy recommendations regard<strong>in</strong>g exploitation volumes<br />

and seafood process<strong>in</strong>g strategies, aim<strong>in</strong>g at different <strong>in</strong>terests: ecosystem health, human nutrition,<br />

food security, energy efficiency, reduction of environmental impacts and rent redistribution.<br />

References<br />

Christensen, V., Steenbeek, J., & Failler, P., 2011. A comb<strong>in</strong>ed ecosystem and value cha<strong>in</strong> model<strong>in</strong>g approach<br />

for evaluat<strong>in</strong>g soci<strong>et</strong>al cost and benefit of fish<strong>in</strong>g. Ecological Modell<strong>in</strong>g, 222(3), 857-864.<br />

Pauly, D., & Christensen, V., 1995. Primary production required to susta<strong>in</strong> global fisheries. Nature,<br />

374(6519), 255-257.<br />

Tyedmers, P., 2000. Salmon and Susta<strong>in</strong>ability: The biophysical cost of produc<strong>in</strong>g salmon through the commercial<br />

salmon fishery and the <strong>in</strong>tensive salmon culture <strong>in</strong>dustry. Ph.D. Dissertation. The University of<br />

British Columbia.<br />

703

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!