28.12.2012 Views

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

LCA Food 2012 in Saint Malo, France! - Manifestations et colloques ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PARALLEL SESSION 6A: TOOLS AND DATABASES 8 th di<strong>et</strong>hanol am<strong>in</strong>e 765 wt pct; 0.400 149 0 3,094 0 337 -1,043 2,536<br />

Ammonia 169 1.18 kg CO2;<br />

3.00E-03 kg Butane; 0.0400<br />

kg Ethane; 7.00E-03 kg LPG<br />

0.459 126 0 738 642 74.5 -606 976<br />

condensate; 0.0100 kg<br />

Natural gas 205 Propane;<br />

nitrogen from air 65.1 0.358 kg oxygen from air;<br />

0.943<br />

0.736<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

698<br />

0<br />

0 Int. Conference 0 698 on <strong>LCA</strong> <strong>in</strong> the<br />

0 Agri-<strong>Food</strong> 0 Sector, 0 1-4 Oct <strong>2012</strong><br />

oxygen from air 882 2.79 kg nitrogen from air; Alloca- 0.264 0 0 0 0 0 0 0<br />

Water for rxn 1,005 tion 1.00 0.809 0 0 0 0 0 0.809<br />

Chemicals Ethylene oxide Mass603 By-products<br />

0.480 kg C4 stream; 0.0881<br />

factor 1.00 Energy 1,169 with allocation, 0 MJ/1000kg 22.5 glyphosate 0 265 -3,426 -1,970<br />

kg fuel oil; 0.0484 kg<br />

Dow-<br />

Direct use Trans- Potential Total n<strong>et</strong><br />

kg / 1000 kg glyphosate kg Hydrogen; / kg chemical 0.569 kg CH4;<br />

Electricity therm Steam of fuel port* recovery energy<br />

glyphosate 1,000 0.634 kg Propylene; 1.03 kg 1.00 500 0 7.72E+04 0 440 -1.48E+04 6.33E+04<br />

Ethylene 452 pyrolysis 0.0553 kg gas; Argon; 3.26 kg 0.260 643 0 1,070 5,237 199 -1,280 5,869<br />

Oxygen 641 Nitrogen; 1.55 kg heavy gas oil, from 0.231 403 0 0 0 0 -2.88 401<br />

PMIDA 1,422 distillation; 0.644 kg<br />

1.00 25.1 0 2,172 0 626 -745 2,079<br />

DSIDA <strong>in</strong> 37pct sol 1,186 kerosene, from distillation;<br />

0.542 1.25 kg kg Ethanol light gas Am<strong>in</strong>e; oil, from<br />

0.235 distillation; kg Tri<strong>et</strong>hanol 0.711 kg am<strong>in</strong>e; residum,<br />

1.00 340 0 1,570 0 0 -7,323 -5,413<br />

Naphtha 461 0.0141 from distillation; kg tri<strong>et</strong>hanol am<strong>in</strong>e, 85 0.225 110 0 51.7 910 0 0 1,072<br />

di<strong>et</strong>hanol am<strong>in</strong>e 765 wt 0.886 pct; kg Chlor<strong>in</strong>e; 0.0252 0.400 149 0 3,094 0 337 -1,043 2,536<br />

Ammonia Sodium hydroxide 169 854 kg 1.18 Hydrogen; kg CO2; 0.459 0.523 4,045 126 0 2,740 738 6420 74.5 376 -46.3 -606 7,114 976<br />

sodium chloride <strong>in</strong> br<strong>in</strong>e<br />

3.00E-03 kg Butane; 0.0400<br />

26 wtpct 1,345 kg Ethane; 7.00E-03 kg LPG 1.00 19.2 0 1,212 0 0 0 1,232<br />

Formaldehyde 263 condensate; 0.0100 kg<br />

1.00 202 0 1,459 0 116 -1,176 600<br />

Natural M<strong>et</strong>hanol gas 205 330 Propane; 0.0103 kg Dim<strong>et</strong>hyl <strong>et</strong>her; 0.943 0.990 4150 0 6940 7,280 698 1450 -6,9350 1,600 698<br />

nitrogen Phosphorus from trichloride air 1,024 65.1 0.358 kg oxygen from air; 0.736 1.00 6.980 0 0 0 4500 0 457 0<br />

oxygen from air 882 2.79 0.0285 kg kg nitrogen Hydrogen; from air; 1.13 0.264 0 0 0 0 0 0 0<br />

Water Chlor<strong>in</strong>e for rxn 1,005 808 kg Sodium hydroxide; 0.464 1.00 0.809 3,826 0 2,5920 0 3550 -43.80 0.809 6,729<br />

Ethylene oxide 603 1.000 kg CO; 1.41 kg Dust;<br />

0.192 0.480 kg Ferrophosphorus;<br />

C4 stream; 0.0881<br />

1.00 1,169 0 22.5 0 265 -3,426 -1,970<br />

phosphorus, white 235 kg 8.10 fuel kg oil; Slag; 0.0484 kg<br />

Hydrogen; 7.92E-04 kg 0.569 Ammonia; kg CH4;<br />

0.0855 1,172 0 0 0 103 -599 677<br />

0.634 7.25E-03 kg Propylene; kg Ammonium 1.03 kg<br />

Ethylene 452 pyrolysis sulfate; 0.0133 gas; kg Benzene;<br />

0.0533 1.55 kg kg heavy coal gas tar from oil, from<br />

distillation; cok<strong>in</strong>g; 0.0703 0.644 kg kg coke oven<br />

0.260 643 0 1,070 5,237 199 -1,280 5,869<br />

coke, m<strong>et</strong>allurgical 22.1 kerosene, gas; from distillation; 0.873 0.620 0 0.0758 0.120 9.72 0 10.5<br />

coal mass 25.7 0.542 kg light gas oil, from 1.00 5.61 0 0 23.0 11.3 0 39.9<br />

Sulfuric acid 0.115 distillation; 0.711 kg residum, 1.00 8.68E-06 0 0.0829 0 0.0506 -0.0366 0.0970<br />

Naphtha 461 from 0.989 distillation; kg Sulfur dioxide; 0.225 110 0 51.7 910 0 0 1,072<br />

Sulfur trioxide 0.0934 0.506 0.886 kg Sulfuric Chlor<strong>in</strong>e; acid; 0.0252 0.401 0.0474 0 0.0178 0.0523 0.0411 -0.384 -0.226<br />

Sodium Sulfur hydroxide 0.0403 854 kg already Hydrogen; allocated 0.523 0.200 4,0450 0 2,7400 0.1970 0.0177 376 -46.30 7,114 0.215<br />

sodium Phosphate chloride rock <strong>in</strong> br<strong>in</strong>e 157 1.00 34.0 0 0 4.73 69.0 0 108<br />

26 Silica wtpct 1,345 62.3 1.00 19.20 0 1,2120 0 27.40 0 1,232 27.4<br />

Formaldehyde Total process energy 263 1.00 1.32E+04 202 0 9.46E+04 1,459 1.48E+040 3,604 116 -3.81E+04 -1,176 8.81E+04 600<br />

M<strong>et</strong>hanol Multiply<strong>in</strong>g by pre-combustion factor 330 to 0.0103 account kg for Dim<strong>et</strong>hyl energy <strong>et</strong>her; 0.990 415 0 694 7,280 145 -6,935 1,600<br />

Phosphorus consumed prior trichloride to po<strong>in</strong>t of use. 1,024 1.00 1.45E+04 6.98 0 1.09E+050 1.70E+040 4,325 450 -4.38E+040 1.01E+05 457<br />

Natural resource energy, HHV 0.0285 kg Hydrogen; 1.13<br />

4.54E+04 0 1.36E+05 1.70E+04 4,325 -5.47E+04 1.48E+05<br />

Chlor<strong>in</strong>e Precombustion factors, MJ fuel 808 extracted kg Sodium per hydroxide; MJ delivered (The 0.464 3,826 0 2,592<br />

excess is consumed <strong>in</strong> delivery) 1.000 kg CO; 1.41 kg Dust;<br />

1.1a 1.15b 1.15b<br />

Natural resource energy, MJ HHV 0.192 fuel kg per Ferrophosphorus;<br />

MJ energy to process.<br />

3.13 1.25 1.25<br />

phosphorus,<br />

a. half coal, half<br />

white<br />

nuclear with no<br />

235<br />

delivery<br />

8.10 kg Slag; 0.0855 1,172 0 0<br />

b. half oil, half natural gas<br />

7.92E-04 kg Ammonia;<br />

7.25E-03 kg Ammonium<br />

Table 2 (cont<strong>in</strong>ued). Cradle-to-gate sulfate; energies 0.0133 kg Benzene; for 1000 kg glyphosate.<br />

0.0533 kg coal tar from<br />

0<br />

1.20<br />

1.00<br />

0<br />

355<br />

1.15b<br />

1.00<br />

103<br />

-43.8<br />

1.15b<br />

1.25<br />

-599<br />

6,729<br />

677<br />

coke, m<strong>et</strong>allurgical<br />

coal mass<br />

Sulfuric acid<br />

cok<strong>in</strong>g; 0.0703 kg coke oven<br />

Energy use, design basis, abbreviated supply cha<strong>in</strong>. Total<br />

22.1 gas; process energy = 88,100 MJ/1000 0.873 kg. 0.620 Total nre = 148,000 0 0.0758 MJ/kg.<br />

25.7 1.00 5.61 0 0<br />

Process energy Natural resource value of process energy<br />

0.115 1.00 8.68E-06 0 0.0829<br />

100,000<br />

0.989 kg Sulfur dioxide;<br />

0.120 9.72<br />

23.0 11.3<br />

0 0.0506<br />

0<br />

0<br />

-0.0366<br />

10.5<br />

39.9<br />

0.0970<br />

Sulfur trioxide 0.0934 0.506 kg Sulfuric acid; 0.401 0.0474 0 0.0178 0.0523 0.0411 -0.384 -0.226<br />

Sulfur<br />

Phosphate rock<br />

80,000 0.0403 already allocated<br />

157<br />

0.200<br />

1.00<br />

0<br />

34.0<br />

0<br />

0<br />

0<br />

0<br />

0.197 0.0177<br />

4.73 69.0<br />

0<br />

0<br />

0.215<br />

108<br />

Silica 62.3 1.00 0 0 0 0 27.4 0 27.4<br />

Total process energy 60,000<br />

1.32E+04 0 9.46E+04 1.48E+04 3,604 -3.81E+04 8.81E+04<br />

Multiply<strong>in</strong>g by pre-combustion factor to account for energy<br />

consumed prior to po<strong>in</strong>t of use.<br />

40,000<br />

Natural resource energy, HHV<br />

Precombustion factors, MJ fuel extracted per MJ delivered (The<br />

1.45E+04<br />

4.54E+04<br />

0 1.09E+05 1.70E+04<br />

0 1.36E+05 1.70E+04<br />

4,325 -4.38E+04 1.01E+05<br />

4,325 -5.47E+04 1.48E+05<br />

excess is consumed <strong>in</strong> delivery) 20,000<br />

1.1a 1.15b 1.15b 1.20 1.15b 1.15b<br />

Natural resource energy, MJ HHV fuel per MJ energy to process.<br />

a. half coal, half nuclear with no delivery<br />

3.13 1.25 1.25 1.00 1.00 1.25<br />

b. half oil, half natural gas 0<br />

Energy, MJ per 1000 kg glyphosate<br />

-20,000<br />

Figure 2. Cradle-to-gate energy profile for glyphosate production<br />

Global warm<strong>in</strong>g potentials <strong>in</strong> particular are typically dom<strong>in</strong>ated by energy use. In the glyphosate supply<br />

cha<strong>in</strong>, process emissions of CO2 (no other GHG chemicals were formed from this chemical tree) are from the<br />

glyphosate gtg (oxidation of organic), <strong>et</strong>hylene oxide (over oxidation of <strong>et</strong>hylene), ammonia (coproduct),<br />

490

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!