26.01.2017 Views

Climate change impacts and vulnerability in Europe 2016

document

document

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Climate</strong> <strong>change</strong> <strong>impacts</strong> on environmental systems<br />

4.1.4 Sea surface temperature<br />

Key messages<br />

• All <strong>Europe</strong>an seas have warmed considerably s<strong>in</strong>ce 1870, <strong>and</strong> the warm<strong>in</strong>g has been particularly rapid s<strong>in</strong>ce the late<br />

1970s. The multi-decadal rate of sea surface temperature rise dur<strong>in</strong>g the satellite era (s<strong>in</strong>ce 1979) has been between<br />

0.21 °C per decade <strong>in</strong> the North Atlantic <strong>and</strong> 0.40 °C per decade <strong>in</strong> the Baltic Sea.<br />

• Globally averaged sea surface temperature is projected to cont<strong>in</strong>ue to <strong>in</strong>crease, although more slowly than atmospheric<br />

temperature.<br />

Relevance<br />

Sea surface temperature (SST) is an important physical<br />

characteristic of the oceans. SST varies naturally<br />

with latitude, be<strong>in</strong>g warmer at the equator <strong>and</strong><br />

coldest <strong>in</strong> Arctic <strong>and</strong> Antarctic regions. As the oceans<br />

absorb more heat, SST will <strong>in</strong>crease (<strong>and</strong> heat will be<br />

redistributed to deeper water layers). Information on<br />

<strong>change</strong>s <strong>in</strong> regional SST complements the <strong>in</strong>formation<br />

on <strong>change</strong>s <strong>in</strong> global OHC presented <strong>in</strong> Section 4.1.3.<br />

Increases <strong>in</strong> SST can lead to an <strong>in</strong>crease <strong>in</strong><br />

atmospheric water vapour over the oceans,<br />

<strong>in</strong>fluenc<strong>in</strong>g entire weather systems. For <strong>Europe</strong>,<br />

the North Atlantic Ocean plays a key role <strong>in</strong> the<br />

regulation of climate over the <strong>Europe</strong>an cont<strong>in</strong>ent<br />

by transport<strong>in</strong>g heat northwards <strong>and</strong> by distribut<strong>in</strong>g<br />

energy from the atmosphere <strong>in</strong>to the deep parts of<br />

the ocean. The Gulf Stream <strong>and</strong> its extensions, the<br />

North Atlantic Current <strong>and</strong> Drift, partly determ<strong>in</strong>e<br />

weather patterns over the <strong>Europe</strong>an cont<strong>in</strong>ent,<br />

<strong>in</strong>clud<strong>in</strong>g precipitation <strong>and</strong> w<strong>in</strong>d regimes. One of<br />

the most visible physical ramifications of <strong>in</strong>creased<br />

temperature <strong>in</strong> the ocean is the reduced area of<br />

sea ice coverage <strong>in</strong> the Arctic polar region (see<br />

Section 3.3.2).<br />

Temperature is a determ<strong>in</strong><strong>in</strong>g factor for the<br />

metabolism of species, <strong>and</strong> thus for their distribution<br />

<strong>and</strong> phenology, such as the tim<strong>in</strong>g of seasonal<br />

migrations, spawn<strong>in</strong>g events or peak abundances<br />

(e.g. plankton bloom events) (Box 4.3). There is an<br />

accumulat<strong>in</strong>g body of evidence suggest<strong>in</strong>g that many<br />

mar<strong>in</strong>e species <strong>and</strong> habitats, such as cetaceans <strong>in</strong> the<br />

North Atlantic Ocean, are highly sensitive to <strong>change</strong>s<br />

<strong>in</strong> SST (P<strong>in</strong>sky et al., 2013; Lambert et al., 2014).<br />

Increased temperature may also <strong>in</strong>crease stratification<br />

of the water column. Such <strong>change</strong>s can have a<br />

significant <strong>in</strong>fluence on vertical nutrient fluxes <strong>in</strong> the<br />

water column, thereby <strong>in</strong>fluenc<strong>in</strong>g primary production<br />

<strong>and</strong> phytoplankton community structure (Hordoir<br />

<strong>and</strong> Meier, 2012). Further <strong>change</strong>s <strong>in</strong> SST could have<br />

widespread effects on mar<strong>in</strong>e species <strong>and</strong> cause the<br />

reconfiguration of mar<strong>in</strong>e ecosystems (Edwards <strong>and</strong><br />

Richardson, 2004; Poloczanska et al., 2013; Glibert<br />

et al., 2014).<br />

Past trends<br />

The production of consistent, long time series of SST<br />

faces challenges ow<strong>in</strong>g to different measurement<br />

devices (<strong>in</strong> situ measurements from ships <strong>and</strong> buoys,<br />

as well as remote measurements from satellites),<br />

associated different def<strong>in</strong>itions (e.g. water depth <strong>and</strong><br />

time of day of measurement), different bias correction<br />

methods, <strong>and</strong> different <strong>in</strong>terpolation methods to<br />

account for <strong>in</strong>complete spatial <strong>and</strong> temporal coverage.<br />

As a result, substantially different values for absolute<br />

SST <strong>and</strong> for SST trends may be reported for a<br />

particular ocean bas<strong>in</strong>, depend<strong>in</strong>g on the underly<strong>in</strong>g<br />

global or regional SST dataset. In fact, there is still<br />

considerable uncerta<strong>in</strong>ty about the trend <strong>in</strong> global<br />

SST for the recent period 1979–2012 (Hartmann et al.,<br />

2013, Table 2.6). Furthermore, observed SST trends<br />

for regional seas reflect the comb<strong>in</strong>ed effects of<br />

anthropogenic warm<strong>in</strong>g <strong>and</strong> natural climate variability<br />

(e.g. Atlantic Multidecadal Oscillation) (Macias et al.,<br />

2013). Despite those uncerta<strong>in</strong>ties, it is undisputed<br />

that SST has been <strong>in</strong>creas<strong>in</strong>g globally <strong>and</strong> <strong>in</strong> <strong>Europe</strong><br />

dur<strong>in</strong>g the last century.<br />

The current <strong>in</strong>dicator primarily uses <strong>in</strong>formation<br />

from the Hadley Centre Sea Ice <strong>and</strong> Sea Surface<br />

Temperature (HadISST1) dataset (Rayner et al., 2006).<br />

Information on the Mediterranean for the satellite<br />

era is complemented by data from the Copernicus<br />

Mar<strong>in</strong>e Environmental Monitor<strong>in</strong>g Service (CMEMS).<br />

The trends, although not necessarily the absolute SST<br />

levels, are consistent between HadISST1 <strong>and</strong> available<br />

high-resolution SST datasets for the regional seas<br />

(Mediterranean Sea, Baltic Sea <strong>and</strong> North Sea). The<br />

trends reported here cannot be directly compared<br />

with those <strong>in</strong> previous versions of this <strong>in</strong>dicator, which<br />

used different underly<strong>in</strong>g datasets.<br />

<strong>Climate</strong> <strong>change</strong>, <strong>impacts</strong> <strong>and</strong> <strong>vulnerability</strong> <strong>in</strong> <strong>Europe</strong> <strong>2016</strong> | An <strong>in</strong>dicator-based report<br />

113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!