26.01.2017 Views

Climate change impacts and vulnerability in Europe 2016

document

document

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Changes <strong>in</strong> the climate system<br />

Box 3.1<br />

Project<strong>in</strong>g climate <strong>change</strong> with models<br />

<strong>Climate</strong> models, often termed general circulation models (GCMs), are numerical models that simulate the climate system at<br />

the global scale based on the physical, chemical <strong>and</strong> biological properties of its components, their <strong>in</strong>teractions <strong>and</strong> feedback<br />

processes, <strong>and</strong> account<strong>in</strong>g for its known properties (IPCC, 2013a) (Figure 3.3). <strong>Climate</strong> models are the most advanced<br />

tools available for modell<strong>in</strong>g the state of the climate system <strong>and</strong> simulat<strong>in</strong>g its response to <strong>change</strong>s <strong>in</strong> atmospheric<br />

concentrations of greenhouse gases <strong>and</strong> aerosols. Models differ <strong>in</strong> their complexity, <strong>in</strong> the number of spatial dimensions<br />

<strong>and</strong> <strong>in</strong> the complexity of describ<strong>in</strong>g physical, chemical or biological processes. <strong>Climate</strong> models are evolv<strong>in</strong>g towards Earth<br />

system models (ESMs), which <strong>in</strong>clude a representation of the carbon cycle, an <strong>in</strong>teractive calculation of atmospheric CO 2 or<br />

compatible emissions, <strong>and</strong> other climatic components (e.g. atmospheric chemistry, ice sheets, dynamic vegetation <strong>and</strong> the<br />

nitrogen cycle). The simulations of future climate depend highly on boundary conditions, which are not sufficiently known<br />

for the future, <strong>and</strong> hence the results are highly uncerta<strong>in</strong>. Most global climate <strong>change</strong> studies <strong>and</strong> assessments (<strong>in</strong>clud<strong>in</strong>g<br />

IPCC AR5) have been us<strong>in</strong>g GCMs from CMIP5. These models simulate atmospheric processes at a horizontal resolution of<br />

between 50 <strong>and</strong> 250 km <strong>and</strong> with 30 to 80 vertical layers, <strong>and</strong> the ocean processes at a horizontal resolution of between<br />

20 <strong>and</strong> 150 km <strong>and</strong> with up to 40 vertical layers.<br />

For more detailed regional climate impact assessments, regional climate models (RCMs) have been used. RCMs are limited<br />

<strong>in</strong> area but can provide <strong>in</strong>formation on the climate <strong>in</strong> higher spatial resolution than GCMs. RCMs typically have a horizontal<br />

resolution of between 2 <strong>and</strong> 50 km, which allows for a better representation of topographic features (e.g. mounta<strong>in</strong> ranges)<br />

<strong>and</strong> of regional-scale climate processes. As a result, they can provide more detailed projections of <strong>change</strong>s <strong>in</strong> regional<br />

precipitation patterns, weather extremes <strong>and</strong> other climate events. The World <strong>Climate</strong> Research Programme CORDEX<br />

(Jones et al., 2011) has developed a set of high-resolution downscaled climate data based upon the CMIP5 experiments with<br />

various doma<strong>in</strong>s for different regions of the world, <strong>in</strong>clud<strong>in</strong>g <strong>Europe</strong>. The EURO-CORDEX study (Jacob et al., 2014; Kotlarski<br />

et al., 2014) has used comb<strong>in</strong>ations of five different GCMs <strong>and</strong> seven different RCMs over the <strong>Europe</strong>an region (approximate<br />

27 °N–72 °N, 22 °W–45 °E), at a horizontal resolution of 12.5 km <strong>and</strong> represent<strong>in</strong>g the time period from 1951 to 2100.<br />

As models differ <strong>in</strong> their use of numerical methods, the description of physical processes <strong>and</strong> the characterisation of climate<br />

variability, their simulations of past <strong>and</strong> current climate show deviations from the observed climate. Furthermore, different<br />

models provide somewhat different climate projections when forced with the same emissions scenario (see Section 1.3).<br />

Nevertheless, the scientific community is confident that climate models provide credible quantitative estimates of future<br />

climate <strong>change</strong>, as these models are based on fundamental physical laws <strong>and</strong> are able to reproduce the key features of<br />

observed climate <strong>change</strong>. These projections are usually presented as a multi-model ensemble, <strong>in</strong> order to represent the<br />

spread of possible future climate <strong>change</strong>.<br />

Figure 3.3<br />

Components needed for modell<strong>in</strong>g climate <strong>change</strong> <strong>and</strong> its <strong>impacts</strong><br />

GCM<br />

RCM<br />

GHG emission <strong>and</strong><br />

concentration scenarios<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .<br />

<strong>Climate</strong><br />

models<br />

Impact<br />

models<br />

Water<br />

AOGCM projections<br />

Downscal<strong>in</strong>g<br />

Impacts<br />

Energy<br />

Food<br />

Ecosystems<br />

Health<br />

Note:<br />

Source:<br />

AOGCM, atmosphere–ocean general circulation model; GHG, greenhouse gas.<br />

EEA.<br />

66 <strong>Climate</strong> <strong>change</strong>, <strong>impacts</strong> <strong>and</strong> <strong>vulnerability</strong> <strong>in</strong> <strong>Europe</strong> <strong>2016</strong> | An <strong>in</strong>dicator-based report

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!