26.01.2017 Views

Climate change impacts and vulnerability in Europe 2016

document

document

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Climate</strong> <strong>change</strong> <strong>impacts</strong> on society<br />

5.4.5 Energy <strong>in</strong>frastructure<br />

The vulnerabilities of energy production <strong>and</strong><br />

transmission <strong>in</strong>frastructure to climate <strong>change</strong> are<br />

becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly relevant ow<strong>in</strong>g to the <strong>in</strong>creas<strong>in</strong>g<br />

dependence of societal activities on electricity, <strong>and</strong> to<br />

the shift of the energy mix towards more vulnerable<br />

technologies, such as w<strong>in</strong>d power generation (Ligtvoet,<br />

et al., 2015). Moreover, the <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terconnection<br />

between national energy networks <strong>in</strong> the EU,<br />

particularly electricity transmission l<strong>in</strong>es, enhances<br />

the <strong>in</strong>terdependency across countries <strong>and</strong>, therefore,<br />

the risk of the <strong>vulnerability</strong> of energy <strong>in</strong>frastructures<br />

spread<strong>in</strong>g across national borders (Vonk et al., 2015) (see<br />

also Section 6.4).<br />

There is a dearth of publications on the impact of climate<br />

<strong>change</strong> on the energy <strong>in</strong>frastructure <strong>in</strong> <strong>Europe</strong>. Pipel<strong>in</strong>es<br />

<strong>and</strong> electricity transmission l<strong>in</strong>es are generally built with<br />

a relatively high tolerance to extreme climatic conditions,<br />

which adds some safety marg<strong>in</strong> for future climate<br />

<strong>change</strong>. They are therefore expected to withst<strong>and</strong> the<br />

threats posed by climate <strong>change</strong> better than other<br />

<strong>in</strong>frastructures. This, however, does not exclude the<br />

need to adapt the design <strong>and</strong> operat<strong>in</strong>g conditions of<br />

energy <strong>in</strong>frastructures used <strong>in</strong> currently mild climates,<br />

by draw<strong>in</strong>g upon the lessons learnt <strong>in</strong> areas where<br />

conditions are usually more severe (Kovats et al., 2014).<br />

Table 5.6 summarises the climate <strong>change</strong> <strong>impacts</strong> on<br />

energy transmission <strong>and</strong> distribution <strong>in</strong>frastructure <strong>in</strong><br />

<strong>Europe</strong> (EC, 2013). The table highlights the risks that<br />

extreme weather events could pose to <strong>in</strong>frastructures,<br />

such as reduced technical efficiency under higher<br />

temperatures. Note that this <strong>in</strong>formation is framed<br />

qualitatively as the risks possibly faced by energy<br />

<strong>in</strong>frastructure <strong>in</strong> the future. However, a comprehensive<br />

quantitative assessment of such <strong>impacts</strong> for EU energy<br />

<strong>in</strong>frastructure is not available.<br />

The stress test of <strong>Europe</strong>an nuclear power plants <strong>in</strong><br />

the aftermath of the Fukushima accident concluded<br />

that further improvements can be made to prepare<br />

for extreme weather events (EC, 2011; ENSREG, 2012).<br />

The International Atomic Energy Agency (IAEA) has<br />

developed guidel<strong>in</strong>es that represent good practice<br />

to <strong>in</strong>crease robustness aga<strong>in</strong>st natural hazards <strong>and</strong><br />

extreme events, which are expected to be implemented<br />

<strong>in</strong> a number of <strong>Europe</strong>an countries as a result of the<br />

stress test (IAEA, 2011). Renewable electricity generators<br />

are most susceptible to potential <strong>change</strong>s <strong>in</strong> extreme<br />

storm gusts, which might damage w<strong>in</strong>d turb<strong>in</strong>es.<br />

A recent assessment of the possible vulnerabilities of<br />

coastal energy <strong>in</strong>frastructures <strong>in</strong> <strong>Europe</strong>, compris<strong>in</strong>g oil,<br />

gas or liquefied natural gas tanker term<strong>in</strong>als <strong>and</strong> nuclear<br />

power stations, highlights the risks posed by sea level<br />

rise. There are 158 major term<strong>in</strong>als <strong>in</strong> the <strong>Europe</strong>an<br />

coastal zone <strong>and</strong> 71 operat<strong>in</strong>g nuclear reactors on the<br />

coast, with more currently planned. Planned adaptation<br />

<strong>and</strong> a high level of awareness of sea level rise threats<br />

could mitigate, to some extent, the risks to coastal<br />

energy <strong>in</strong>frastructure <strong>in</strong> north-western <strong>Europe</strong> (Brown<br />

et al., 2014).<br />

Table 5.6<br />

<strong>Climate</strong>-related vulnerabilities of energy <strong>in</strong>frastructures <strong>in</strong> the EU<br />

Type Climatic pressures Risks Time frame of expected<br />

<strong>impacts</strong><br />

Primarily<br />

electrical<br />

transmission<br />

<strong>and</strong> distribution<br />

networks<br />

Primarily<br />

transmission<br />

networks (oil<br />

<strong>and</strong> gas)<br />

Primarily<br />

storage <strong>and</strong><br />

distribution<br />

Extremely high<br />

temperatures<br />

Snow, ic<strong>in</strong>g, storms<br />

Heavy precipitation<br />

Melt<strong>in</strong>g permafrost<br />

Higher<br />

temperatures<br />

Storms <strong>in</strong><br />

connection with<br />

high tides <strong>and</strong> sea<br />

level rise<br />

Decreased network capacity Medium-negative (2025)<br />

to extreme-negative<br />

(2080)<br />

Increased chance of damage to energy<br />

networks <strong>and</strong>, thus, blackout<br />

Mass movements (l<strong>and</strong>slides, mud <strong>and</strong><br />

debris flows) caus<strong>in</strong>g damage<br />

Tie-<strong>in</strong>s of gas pipel<strong>in</strong>es <strong>in</strong> permafrost<br />

ground cause technical problems<br />

(this is related only to Arctic supply<br />

pipel<strong>in</strong>es <strong>and</strong> not to the east–west<br />

gas pipel<strong>in</strong>es, as the latter are not<br />

grounded <strong>in</strong> permafrost)<br />

Reduced throughput capacity <strong>in</strong> gas<br />

pipel<strong>in</strong>es<br />

Threats to ref<strong>in</strong>eries <strong>and</strong> coastal<br />

pipel<strong>in</strong>es ow<strong>in</strong>g to sea level rise, high<br />

tide <strong>and</strong> storms<br />

Medium-negative to<br />

low‐positive (2050)<br />

Time frame, magnitudes<br />

<strong>and</strong> frequencies<br />

uncerta<strong>in</strong><br />

Low for 2025 <strong>and</strong><br />

gradually <strong>in</strong>creas<strong>in</strong>g<br />

Low for 2025 <strong>and</strong><br />

gradually <strong>in</strong>creas<strong>in</strong>g<br />

Low for 2025 <strong>and</strong><br />

gradually <strong>in</strong>creas<strong>in</strong>g<br />

Regions ma<strong>in</strong>ly<br />

affected<br />

EU-wide<br />

North-western<br />

EU<br />

Mounta<strong>in</strong>ous<br />

regions <strong>in</strong><br />

particular<br />

Arctic Eurasia<br />

EU-wide<br />

EU-wide<br />

Source: EC, 2013 (Annex 2, p. 34).<br />

<strong>Climate</strong> <strong>change</strong>, <strong>impacts</strong> <strong>and</strong> <strong>vulnerability</strong> <strong>in</strong> <strong>Europe</strong> <strong>2016</strong> | An <strong>in</strong>dicator-based report<br />

253

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!