26.01.2017 Views

Climate change impacts and vulnerability in Europe 2016

document

document

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Changes <strong>in</strong> the climate system<br />

Box 3.2<br />

<strong>Climate</strong> reanalysis<br />

Reanalysis is the name given to the use of a modern data assimilation system to analyse comprehensive sets of<br />

observations that extend back <strong>in</strong> time over multiple decades. It employs a model of the atmosphere, ocean or coupled<br />

climate system to spread observational <strong>in</strong>formation <strong>in</strong> space <strong>and</strong> time, <strong>and</strong> from one variable to another. Reanalysis<br />

produces gap-free global datasets for numerous climate variables, at higher spatial or temporal resolution than is usually<br />

provided by directly analys<strong>in</strong>g a s<strong>in</strong>gle type of observation. This makes the datasets valuable for study<strong>in</strong>g short-term<br />

climatic processes <strong>and</strong> extreme events. The value of the <strong>in</strong>formation provided for longer term trends depends on the<br />

quality <strong>and</strong> <strong>change</strong>s over time of the global observ<strong>in</strong>g system, on the realism of the assimilat<strong>in</strong>g model, <strong>and</strong> on how well<br />

observations are comb<strong>in</strong>ed with background <strong>in</strong>formation from the model, which takes <strong>in</strong>to account the vary<strong>in</strong>g biases <strong>and</strong><br />

r<strong>and</strong>om errors of both the observations <strong>and</strong> the background <strong>in</strong>formation.<br />

Smoothed time series of global <strong>and</strong> <strong>Europe</strong>an average surface air temperatures are presented <strong>in</strong> Figure 3.5, start<strong>in</strong>g from<br />

1979, a year that followed a significant upgrade of the observ<strong>in</strong>g system. Differences from the 1981–2010 average are<br />

shown for the ERA-Interim reanalysis (Dee et al., 2011). Uncerta<strong>in</strong>ty bars show the spread of values provided by ERA-Interim,<br />

the Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015), HadCRUT4 (Morice et al., 2012) <strong>and</strong> US National Oceanic<br />

<strong>and</strong> Atmospheric Adm<strong>in</strong>istration (NOAA) Global Temp (Karl et al., 2015) datasets that comb<strong>in</strong>e monthly temperature data<br />

from l<strong>and</strong> stations with measurements of sea-surface temperature. All datasets <strong>in</strong>dicate that global temperature has risen<br />

s<strong>in</strong>ce the 1970s to reach values that are the highest on record.<br />

Shorter-period fluctuations <strong>in</strong> global values are more uncerta<strong>in</strong>. This is largely because the effects of sea ice <strong>change</strong>s are<br />

better represented <strong>in</strong> the reanalyses <strong>and</strong> because sea-surface temperature analyses differ. The datasets agree quite well<br />

across <strong>Europe</strong>, where average temperatures were high from mid-2006 to mid-2007 <strong>and</strong> have recently been high for a<br />

prolonged spell s<strong>in</strong>ce 2014.<br />

Figure 3.5 Global <strong>and</strong> <strong>Europe</strong>an average surface air temperatures from 1979 to 2015<br />

o<br />

C<br />

0.4 Globe<br />

0.2<br />

0<br />

– 0.2<br />

– 0.4<br />

o<br />

C<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005<br />

2010<br />

2015<br />

1.5<br />

<strong>Europe</strong><br />

1.0<br />

0.5<br />

0<br />

– 0.5<br />

– 1.0<br />

– 1.5<br />

1980<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005<br />

2010<br />

2015<br />

Note:<br />

Runn<strong>in</strong>g 12-month averages from the ERA-Interim reanalysis are shown, with solid red <strong>and</strong> blue shad<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>g when<br />

temperature is above <strong>and</strong> below, respectively, the average for 1981–2010. The short, darker bars provide an <strong>in</strong>dication of the<br />

uncerta<strong>in</strong>ty <strong>in</strong> the estimates provided by different datasets.<br />

Source: Copernicus <strong>Climate</strong> Change Service, ECMWF ( 42 ).<br />

( 42 ) For further details on the time series <strong>and</strong> maps, see http://climate.copernicus.eu/resources/data-analysis/average-surface-air-temperatureanalysis.<br />

72 <strong>Climate</strong> <strong>change</strong>, <strong>impacts</strong> <strong>and</strong> <strong>vulnerability</strong> <strong>in</strong> <strong>Europe</strong> <strong>2016</strong> | An <strong>in</strong>dicator-based report

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!