28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

114 Valery Yu. Senichev, Vasiliy V. Tereshatov<br />

Polymer<br />

δ,<br />

(MJ/m 3 ) 1/2<br />

δd,<br />

(MJ/m 3 ) 1/2<br />

δp,<br />

(MJ/m 3 ) 1/2<br />

δh,<br />

(MJ/m 3 ) 1/2<br />

Polyacrylonitrile 25.10 18.19 15.93 6.74<br />

Polyvinylchloride 21.41 18.68 10.01 3.06<br />

Polymethylmethacrylate 20.18 17.72 5.72 7.76<br />

Polystyrene 19.81 19.68 0.86 2.04<br />

Polytetrafluoroethylene 13.97 13.97 0.00 0<br />

Polyethyleneterephthalate 21.6 19.5 3.47 8.58<br />

A large number <strong>of</strong> data were accumulated for different solvents and polymers (see Tables<br />

4.1.1, 4.1.2). A variation <strong>of</strong> the Hansen method is the approach <strong>of</strong> Teas. 33 He showed<br />

for some polymer-solvent systems that it was possible to use fractional cohesive energy<br />

densities plotted on a triangular chart to represent solubility limits:<br />

2<br />

2<br />

2<br />

δ δ<br />

d<br />

p δh<br />

E d = , E p = , E h =<br />

[4.1.24]<br />

2<br />

2<br />

2<br />

δ δ δ<br />

0<br />

2 2 2 2<br />

where δ0 = δd + δp + δh<br />

Teas used fractional parameters defined as<br />

0<br />

0<br />

100δ 100δ d<br />

p<br />

100<br />

fd =<br />

, fp =<br />

, fh<br />

=<br />

[4.1.25]<br />

δ + δ + δ δ + δ + δ δ + δ + δ<br />

d p h<br />

d p h<br />

d p h<br />

This representation was completely empirical without any theoretical justification.<br />

Some correlations between components <strong>of</strong> solubility parameters and physical parameters<br />

<strong>of</strong> liquids (surface tension, dipole moment, the refraction index) were generalized elsewhere.<br />

11<br />

2 2 2<br />

−13<br />

/<br />

δ + 0. 632δ + 0. 632δ = 13. 9V<br />

γ<br />

d p h 1 l<br />

2 2 2<br />

−13<br />

/<br />

δ + δ + 006 . δ = 139 . V γ<br />

d p h 1 l<br />

2 2 2<br />

−13<br />

/<br />

δ + 2δ + 0. 48δ = 13. 9V<br />

γ<br />

d p h 1 l<br />

non-alcohols [4.1.26]<br />

alcohols [4.1.27]<br />

acids, phenols [4.1.28]<br />

where:<br />

γl surface tension.<br />

Koenhan and Smolder proposed the following equation applicable to the majority <strong>of</strong><br />

solvents, except cyclic compounds, acetonitrile, carboxylic acids, and multi-functional alcohols.<br />

34<br />

2 2<br />

−13<br />

/<br />

δ + δ = 13. 8V<br />

γ<br />

d p 1 l<br />

[4.1.29]<br />

They also proposed a correlation between polar contribution to the solubility parameter<br />

and refractive index:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!