28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.4 Measurement <strong>of</strong> solvent activity 215<br />

approaches are used. Pure polymer parameters strongly influence the calculation <strong>of</strong> gas solubilities,<br />

Henry’s constants, and limiting solvent activities at infinite dilution <strong>of</strong> the solvent<br />

in the liquid/molten polymer. Additionally, the polymer parameters mainly determine the<br />

occurrence <strong>of</strong> a demixing region in such model calculations. Generally, the quantitative representation<br />

<strong>of</strong> liquid-liquid equilibria is a much more stringent test for any model, what was<br />

not discussed here. To calculate such equilibria it is <strong>of</strong>ten necessary to use some mixture<br />

properties to obtain pure-component polymer parameters. This is necessary because, at<br />

present, no single theory is able to describe correctly the properties <strong>of</strong> a polymer in both the<br />

pure molten state and in the highly dilute solution state. Therefore, characteristic polymer<br />

parameters from PVT-data <strong>of</strong> the melt are not always meaningful for the dilute polymer solution.<br />

Additionally, characteristic polymer parameters from PVT-data also may lead to<br />

wrong results for concentrated polymer solutions because phase equilibrium calculations<br />

are much more sensitive to variations in pure component parameters than polymer densities.<br />

All models need some binary interaction parameters that have to be adjusted to some<br />

thermodynamic equilibrium properties since these parameters are a priori not known (we<br />

will not discuss results from Monte Carlo simulations here). Binary parameters obtained<br />

from data <strong>of</strong> dilute polymer solutions as second virial coefficients are <strong>of</strong>ten different from<br />

those obtained from concentrated solutions. Distinguishing between intramolecular and<br />

intermolecular segment-segment interactions is not as important in concentrated solutions<br />

as it is in dilute solutions. Attempts to introduce local-composition and non-random-mixing<br />

approaches have been made for all the theories given above with more or less success. At<br />

least, they introduce additional parameters. More parameters may cause a higher flexibility<br />

<strong>of</strong> the model equations but leads <strong>of</strong>ten to physically senseless parameters that cause troubles<br />

when extrapolations may be necessary. Group-contribution concepts for binary interaction<br />

parameters in equation <strong>of</strong> state models can help to correlate parameter sets and also data <strong>of</strong><br />

solutions within homologous series.<br />

4.4.5 REFERENCES<br />

1 Wen Hao, H. S. Elbro, P. Alessi, Polymer Solution Data Collection, Pt.1: Vapor-Liquid Equilibrium,<br />

Pt.2: Solvent Activity Coefficients at Infinite Dilution, Pt. 3: Liquid-Liquid Equilibrium, DECHEMA<br />

Chemistry Data Series, Vol. XIV, Pts. 1, 2+3, DECHEMA, Frankfurt/M., 1992.<br />

2 R. P. Danner, M. S. High, <strong>Handbook</strong> <strong>of</strong> Polymer Solution Thermodynamics, DIPPR, AIChE, New York,<br />

1993.<br />

3 Ch. Wohlfarth, Vapour-liquid equilibrium data <strong>of</strong> binary polymer solutions, Physical Science Data 44,<br />

Elsevier, Amsterdam, 1994.<br />

4 J. Brandrup, E. H. Immergut, E. A. Grulke (eds.), Polymer <strong>Handbook</strong>, 4th ed., J. Wiley & Sons.,<br />

Inc., New York, 1999.<br />

5 N. Schuld, B. A. Wolf, in Polymer <strong>Handbook</strong>, J. Brandrup, E. H. Immergut, E. A. Grulke (eds.), 4th ed.,<br />

J. Wiley & Sons., Inc., New York, 1999, pp. VII/247-264.<br />

6 R. A. Orwoll, in Polymer <strong>Handbook</strong>, J. Brandrup, E. H. Immergut, E. A. Grulke (eds.), 4th ed., J. Wiley &<br />

Sons., Inc., New York, 1999, pp. VII/649-670.<br />

7 R. A. Orwoll, P. A. Arnold, in Physical Properties <strong>of</strong> Polymers <strong>Handbook</strong>, J. E. Mark (Ed.), AIP Press,<br />

Woodbury, New York, 1996, pp. 177-198.<br />

8 R. A. Orwoll, Rubber Chem. Technol., 50, 451 (1977).<br />

9 M. D. Lechner, E. Nordmeier, D. G. Steinmeier, in Polymer <strong>Handbook</strong>, J. Brandrup, E. H. Immergut,<br />

E. A. Grulke (eds.), 4th ed., J. Wiley & Sons., Inc., New York, 1999, pp. VII/85-213.<br />

10 D. C. Bonner, J. Macromol. Sci. - Revs. Macromol. Chem., C, 13, 263 (1975).<br />

11 A. F. M. Barton, CRC <strong>Handbook</strong> <strong>of</strong> Polymer-Liquid Interaction Parameters and Solubility<br />

Parameters, CRC Press, Boca Raton, 1990.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!