28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

258 Nobuyuki Tanaka<br />

as shown in the fourth column, hx(eq.[5.2.17]) - hu is almost equal to hx (≈hu) from equation<br />

[5.2.18] or δp (=13.6 (cal/cm 3 ) 1/2 ). For iPP, hx(eq.[5.2.17]) is a little more than hx from equation<br />

[5.2.18] or δp (=8.2 (cal/cm 3 ) 1/2 ), suggesting that the ordered parts in glasses seem to be<br />

related closely to the helical structure. For iPS, hx(eq.[5.2.17]) and hx(eq.[5.2.17]) - hu are in<br />

the upper and lower ranges <strong>of</strong> hx from δp (=8.5~10.3 (cal/cm 3 ) 1/2 ), respectively. For PET,<br />

hx(eq.[5.2.17]) is almost equal to hu, but hx from equation [5.2.18] or δp (=10.7 (cal/cm 3 ) 1/2 )<br />

is a little more than hu, resulting from glycol bonds in bulk crystals distorted more than in ordered<br />

parts. 10,25,30<br />

5.2.3 δp PREDICTION FROM THERMAL TRANSITION ENTHALPIES<br />

Table 5.2.3 shows the numerical values <strong>of</strong> δp predicted from equations [5.2.1] ~ [5.2.4] us-<br />

r<br />

ing the results <strong>of</strong> Tables 5.2.1 and 5.2.2, together with hx,hu,hg,h0, and δp (reference values)<br />

7,8 r<br />

for several polymers. The predicted values <strong>of</strong> δp for each polymer are close to δp .<br />

Table 5.2.3<br />

N6<br />

Polymer<br />

N66<br />

iPP<br />

iPS<br />

PET<br />

hx<br />

cal/mol<br />

9590*<br />

(10070)<br />

4830**<br />

19300*<br />

(20280)<br />

9580**<br />

1600*<br />

(1780)<br />

1470**<br />

5030*<br />

(5550)<br />

5380*<br />

(5670)<br />

6600**<br />

hu<br />

cal/mol<br />

-<br />

-<br />

5100<br />

-<br />

-<br />

10300<br />

1900<br />

1900<br />

1900<br />

-<br />

-<br />

5500<br />

5500<br />

5500<br />

hg<br />

cal/mol<br />

8980<br />

8980<br />

8980<br />

17980<br />

17980<br />

17980<br />

-<br />

-<br />

-<br />

4820<br />

4820<br />

4180<br />

4180<br />

4180<br />

h0<br />

cal/mol<br />

18570<br />

(19050)<br />

18910<br />

37280<br />

(38260)<br />

37860<br />

3500<br />

(3680)<br />

3370<br />

9850<br />

(10370)<br />

15060<br />

(15350)<br />

16280<br />

δ p<br />

(cal/cm 3 ) 1/2<br />

13.4<br />

(13.6)<br />

13.5<br />

13.4<br />

(13.6)<br />

13.5<br />

8.4<br />

(8.6)<br />

8.3<br />

9.9<br />

(10.2)<br />

10.2<br />

(10.3)<br />

10.6<br />

r<br />

δp (cal/cm 3 ) 1/2<br />

-<br />

-<br />

-<br />

13.6<br />

13.6<br />

13.6<br />

8.2 7<br />

8.2 7<br />

8.2 7<br />

8.5 - 10.3<br />

8.5 - 10.3<br />

10.7<br />

10.7<br />

10.7<br />

The numerical values attached * and ** are h x from equations [5.2.17] and [5.2.18], respectively. The numerical<br />

values in parentheses were calculated using equation [5.2.17] with the second term <strong>of</strong> T g{s g conf - (RlnZ0)/x}.<br />

For atactic polypropylene (aPP) that could be treated as a binary random copolymer<br />

composed <strong>of</strong> meso and racemi dyads, 26,27,31 δ p is predicted as follows.<br />

For binary random copolymers, h g is given by:<br />

int conf<br />

h = h + h ( X ) [5.2.19]<br />

g g g<br />

A<br />

with h g int =hg int (1)-(hg int (1)-hg int (0))(1 - XA)<br />

where:<br />

h g conf (XA) the conformational enthalpy per molar structural unit for a copolymer<br />

with X A at T g<br />

h g int (1) the intermolecular cohesive enthalpy per molar structural unit for a<br />

homopolymer <strong>of</strong> component A (X A=1) at T g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!