28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.2 Effect <strong>of</strong> system variables on solubility 131<br />

Phase diagrams are characterized by critical temperatures, spinodals and binodals. A<br />

binodal is a curve connecting equilibrium structures <strong>of</strong> a stratified system. A spinodal is a<br />

curve defining boundary <strong>of</strong> metastables condition (Fig.4.2.3).<br />

Binodals are evaluated experimentally by light scattering at cloud point, 29 by volume<br />

changes <strong>of</strong> coexisting phases, 30 or by the electron probe R-spectral analysis. 31<br />

It is possible to calculate phase behavior, considering that binodals correspond to a<br />

condition:<br />

where:<br />

′ =<br />

( Δμ ) ( Δμ<br />

)<br />

i i<br />

″<br />

i a component <strong>of</strong> a solution<br />

′ ″<br />

, changes <strong>of</strong> a chemical potential in phases <strong>of</strong> a stratified system<br />

( Δμ i) ( Δμ<br />

i)<br />

The equation <strong>of</strong> the spinodal corresponds to the condition<br />

( ΔG) ∂( Δμ<br />

)<br />

2<br />

∂<br />

∂ϕ<br />

2<br />

i<br />

i<br />

[4.2.11]<br />

= = 0<br />

[4.2.12]<br />

∂ϕ<br />

i<br />

where:<br />

ΔG the Gibbs free mixing energy<br />

ϕi volume fraction <strong>of</strong> a component <strong>of</strong> a solvent.<br />

At a critical point, binodal and spinodal coincide<br />

3 ( ΔG) ∂ ( ΔG)<br />

2<br />

∂<br />

∂ϕ<br />

= [4.2.13]<br />

3<br />

∂ϕ<br />

2<br />

i i<br />

In the elementary case <strong>of</strong> a two-component system, the Flory-Huggins theory gives<br />

the following solution: 3<br />

⎡ ⎛ r ⎞<br />

⎤<br />

i<br />

Δμ i = RT ϕ i + ⎜ − ⎟<br />

2<br />

⎢ln<br />

1 ( 1− ϕ i) + riχ1ϕi<br />

⎥<br />

⎜<br />

⎝ r ⎟<br />

⎣⎢<br />

j ⎠<br />

⎦⎥<br />

[4.2.14]<br />

where:<br />

ri, rj numbers <strong>of</strong> segments <strong>of</strong> corresponding component.<br />

The last equation can be solved if one takes into account the equality <strong>of</strong> chemical potentials<br />

<strong>of</strong> a component in two co-existing phases <strong>of</strong> a stratified system.<br />

⎛<br />

ln ′ + ⎜<br />

x ⎞<br />

⎛<br />

i<br />

2<br />

− ⎟ ′ + ( ′ ) = ln ′′ + ⎜<br />

x<br />

ϕi 1 ϕ j xiχij<br />

ϕi ϕi<br />

1−<br />

⎜ ⎟<br />

⎝ x<br />

⎜<br />

j ⎠<br />

⎝ x<br />

REFERENCES<br />

i<br />

j<br />

⎞<br />

⎟ϕ′′<br />

+ ′′<br />

j xiχij<br />

ϕi<br />

⎟<br />

⎠<br />

( )<br />

1 P.J. Flory, J. Chem. Phys., 9, 660, (1941).<br />

2 P.J. Flory, J. Chem. Phys., 10, 51 (1942).<br />

3 P.J. Flory, Principles <strong>of</strong> polymer chemistry, Cornell University Press, Ithaca, 1953.<br />

4 M.L. Huggins, J. Chem. Phys., 9, 440 (1941).<br />

2<br />

[4.2.15]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!