28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

654 Mati Karelson<br />

magnitude <strong>of</strong> this redistribution depends on both the dielectric constant <strong>of</strong> the solvent and<br />

the polarizability <strong>of</strong> the solute molecule. Within the approximations <strong>of</strong> the spherical solute<br />

cavity and the point dipole interactions between the solute and solvent, the dynamically<br />

changed Onsager reaction field can be expressed by the following formula 14<br />

R<br />

l<br />

2( −1)<br />

( 2ε+ 1)<br />

( ν) ( ν)<br />

μ a + αa R ε l<br />

=<br />

3<br />

a<br />

0<br />

[11.1.36]<br />

Notably, the use <strong>of</strong> the macroscopic dielectric constant ε = ε 0 in the last formula is justified<br />

only when the lifetime <strong>of</strong> the solute molecule in a given (ν-th) state is much longer<br />

than the rotational-vibrational relaxation time <strong>of</strong> the solvent at given temperature. This is<br />

not a valid assumption in the case <strong>of</strong> the Franck-Condon states, which have the lifetime<br />

much shorter than the rotational-vibrational relaxation time <strong>of</strong> the solvent. Therefore, the<br />

solvent is only partially relaxed for these states and the corresponding reaction field is characterized<br />

by the dielectric constant at infinite frequency <strong>of</strong> external electric field, ε ∞ .Byinserting<br />

the expression for the reaction field [11.1.36] into the equation [11.1.18] and<br />

assuming that the static polarizability <strong>of</strong> the solute molecule is approximately equal to the<br />

one third <strong>of</strong> the cube <strong>of</strong> Onsager’s cavity radius<br />

a<br />

α ν<br />

3<br />

( ) 0<br />

a ≈<br />

3<br />

[11.1.37]<br />

the following semiclassical equation can be obtained for the solvation energy <strong>of</strong> the ν-th<br />

(Franck-Condon) state <strong>of</strong> the solute molecule 14<br />

E<br />

s<br />

−<br />

a a a a<br />

=−<br />

+ a<br />

−<br />

0 ν 0 ν)<br />

( ν)<br />

⎛ε0<br />

1 ε∞−1⎞⎡2μ<br />

μ 2μ<br />

μ ⎛ ε0<br />

−1⎞⎤<br />

2 μ a ⎛ ε −1⎞<br />

∞<br />

⎜<br />

⎟<br />

⎝ + ⎟⎢<br />

+ ⎜<br />

3<br />

3<br />

3<br />

ε0<br />

2 ε∞<br />

2⎠0<br />

a ⎜<br />

⎟<br />

0 ⎝ε0<br />

+ 2⎟⎥<br />

− ⎜<br />

⎣<br />

⎠⎦<br />

a ⎜<br />

⎟<br />

0 ⎝ε∞<br />

+ 2⎟<br />

⎠<br />

+<br />

⎡⎛<br />

3 ⎞<br />

+ ⎢ ⎜<br />

⎟<br />

⎝2ε<br />

+ 1⎟<br />

0 ⎣⎢<br />

⎠<br />

⎛ ε∞<br />

−1⎞<br />

2<br />

+ ⎜<br />

⎟<br />

⎝ε<br />

+ ⎟ 3<br />

∞ 2⎠<br />

a0<br />

2<br />

( 2ε0 + 1)<br />

( ε0 −ε∞)<br />

( ε −ε∞)<br />

ε<br />

( ) ( ( )<br />

2<br />

2<br />

kT ⎛2ε0<br />

−2⎞<br />

⎤<br />

+ ⎜ 3<br />

2 0 0 3a⎜<br />

⎟<br />

0 ⎝2ε0<br />

+ ⎟ ⎥<br />

1⎠<br />

⎦⎥<br />

( )<br />

∑ ( μ a )<br />

λ≠ν ⎛ E −E<br />

⎜1−<br />

⎜<br />

⎝ E0 −E<br />

2<br />

λν ν λ<br />

s ps<br />

⎞<br />

⎟<br />

⎠<br />

( μ )<br />

∑<br />

λν ( )<br />

a<br />

λ≠ν E −E<br />

λ ν<br />

2<br />

2<br />

+<br />

[11.1.38]<br />

The solvatochromic shift due to the difference in the electrostatic solvation energy <strong>of</strong><br />

the ground state and the excited state <strong>of</strong> the solute, respectively, is thus given as follows:<br />

2 ⎧⎛ε<br />

− − ⎞⎛<br />

+ ⎞<br />

0 1 ε∞1<br />

2ε0 1<br />

ΔE s = ⎜ −<br />

a ⎜<br />

⎟<br />

⎝ + + ⎟<br />

⎜<br />

⎟<br />

3⎨<br />

2 ⎠⎝<br />

+ ⎟<br />

0 ⎩ ε0<br />

ε∞2<br />

ε0<br />

2 ⎠<br />

⎧<br />

⎪⎛<br />

3 ⎞<br />

+ ⎨ ⎜<br />

⎟<br />

⎝2ε<br />

+ 1⎟<br />

0 ⎩⎪ ⎠<br />

2<br />

( 2ε0 + 1)<br />

( ε0 − ε∞)<br />

( ε ε ) ε<br />

0 ν ε<br />

ν<br />

[ ( μ a) μ aμ a ] ( μ a) ( μ a )<br />

2 0 0 1<br />

( ) ⎛ − ⎞ ∞<br />

( )<br />

− + ⎜ ⎟ −<br />

0 2<br />

( μ ) λ ( ) ( νλ)<br />

a ( μ a )<br />

∑ −∑<br />

⎜<br />

⎝ε<br />

+ 2⎟<br />

∞ ⎠<br />

2<br />

kT ⎡<br />

⎤⎫<br />

⎪<br />

3 ⎢<br />

⎥⎬+<br />

2 0 − ∞ 0 3a0<br />

λ≠<br />

E0<br />

−Eλ<br />

λν ≠ Eν −E<br />

⎣⎢<br />

0<br />

λ⎦⎥⎭⎪<br />

2 2<br />

[ ]<br />

⎫<br />

⎬<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!