28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.1 Simple solvent characteristics 115<br />

δd nD<br />

= 955 . −555<br />

. [4.1.30]<br />

where:<br />

nD refractive index<br />

Alternatively Keller et. al. 35 estimated that for nonpolar and slightly polar liquids<br />

where:<br />

δ d<br />

= 62. 8x<br />

for x ≤ 0.28 [4.1.31]<br />

2 3<br />

δd =− 4. 58 + 108x − 119x + 45x<br />

for x > 0.28 [4.1.32]<br />

n<br />

x =<br />

n<br />

2<br />

D<br />

2<br />

D<br />

− 1<br />

+ 2<br />

Peiffer suggested the following expression: 35<br />

( 4 3 )( 1)<br />

2 2<br />

δ = K ππI<br />

/ d N / V<br />

[4.1.33]<br />

d<br />

3<br />

where:<br />

K packing parameter<br />

I ionization potential<br />

α molecular polarizability<br />

N number <strong>of</strong> molecules in the volume unit<br />

V1 =Nr* 3 /K<br />

r* the equilibrium distance between molecules.<br />

For the estimation <strong>of</strong> nonpolar component <strong>of</strong> δ Brown et al. 36 proposed the<br />

homomorph concept. The homomorph <strong>of</strong> a polar molecule is the nonpolar molecule most<br />

closely resembling it in the size and the structure (e.g., n-butane is the homomorph <strong>of</strong><br />

n-butyl alcohol). The nonpolar component <strong>of</strong> the cohesion energy <strong>of</strong> a polar solvent is taken<br />

as the experimentally determined total vaporization energy <strong>of</strong> the corresponding<br />

homomorph at the same reduced temperature (the actual temperature divided by the critical<br />

temperature in Kelvin’s scale). For this comparison the molar volumes must also be equal.<br />

Blanks and Prausnitz proposed plots <strong>of</strong> dependencies <strong>of</strong> dispersion energy density on a molar<br />

volume for straight-chain, alicyclic and aromatic hydrocarbons. If the vaporization energies<br />

<strong>of</strong> appropriate hydrocarbons are not known they can be calculated by one <strong>of</strong> the<br />

methods <strong>of</strong> group contributions (See Chapter 5).<br />

Hansen and Scaarup 28 calculated the polar component <strong>of</strong> solubility parameter using<br />

Bottcher’s relation to estimating the contribution <strong>of</strong> the permanent dipoles to the cohesion<br />

energy:<br />

where:<br />

δ<br />

2<br />

p<br />

12108 ε−1<br />

=<br />

V 2ε−n<br />

2 2<br />

1<br />

D<br />

( nD<br />

2)<br />

ε dielectric constant,<br />

μ dipole moment<br />

+ μ<br />

[4.1.34]<br />

2 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!