28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

134 Abraham Nitzan<br />

t<br />

Dt ()= ∫ dt′ ε ( t− t′ ) E( t′<br />

)<br />

[4.3.2]<br />

−∞<br />

−iωt<br />

and their Fourier transforms (e.g. E( ω)<br />

= dte E( t ) satisfy<br />

where<br />

∞<br />

∫<br />

−∞<br />

D( ω) = ε( ω) E(<br />

ω)<br />

[4.3.3]<br />

∞<br />

−iωt<br />

() ≡∫dte<br />

() t<br />

εω ε<br />

rewriting ε(t) in the form<br />

we get<br />

0<br />

() t = () t + () t<br />

[4.3.4]<br />

ε 2 ε δ ~ ε<br />

[4.3.5]<br />

e<br />

t<br />

() = e () + ∫ ′ ( − ′ ) ( ′ )<br />

Dt ε Et dtε t t Et ~ [4.3.6]<br />

−∞<br />

() ω ε () ω ε()() ω ω<br />

D = E + E ~ [4.3.7]<br />

e<br />

In Eq. [4.3.5] ε e is the “instantaneous” part <strong>of</strong> the solvent response, associated with its<br />

electronic polarizability. For simplicity we limit ourselves to the Debye model for dielectric<br />

relaxation in which the kernel ~ ε in [4.3.5] takes the form<br />

~ εs εe<br />

ε()<br />

t = e<br />

τ<br />

− −t/<br />

τD<br />

D<br />

[4.3.8]<br />

This function is characterized by three parameters: the electronic ε e and static ε s response<br />

constants, and the Debye relaxation time, τ D. In this case<br />

leads to<br />

()<br />

εω = ε +<br />

e<br />

∞<br />

∫<br />

0<br />

εs −εe<br />

/<br />

dt e e<br />

τ<br />

D<br />

−t τ −iωt<br />

ε −ε<br />

= εe<br />

+<br />

1+<br />

iωτ<br />

s e<br />

In this model a step function change in the electrostatic field<br />

() ()<br />

D<br />

[4.3.9]<br />

Et = 0, t< 0; Et = Et , ≥0<br />

[4.3.10]<br />

t<br />

εs −εe<br />

−( t− t′<br />

)/ τD −t/<br />

τD<br />

() = εe()<br />

+<br />

() s(<br />

1 )<br />

∫<br />

Dt Et e Et′ dt′ = ε − e + εee<br />

τ<br />

0<br />

D<br />

[ ]<br />

−t/τD E<br />

[4.3.11]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!