28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5.2 Prediction <strong>of</strong> solubility parameter 257<br />

From equations [5.2.15] and [5.2.16], it is shown that C p <strong>of</strong> ordered parts is equal to<br />

that <strong>of</strong> flow parts. Therefore, h x is given by: 10<br />

hx ≈ hg + Δ h<br />

[5.2.17]<br />

Te<br />

conf<br />

with Δh = ∫ ΔCpdTand<br />

{RTgln(Zg/Z0)}/x ≤Δh≤Tg{sg - (RlnZ0)/x},<br />

Tg<br />

where:<br />

ΔCp the difference in the observed Cp and the hypothesized super heated glass Cp at the glass transition<br />

Zg the conformational partition function per a chain at Tg Z0 the component conformational partition function per chain regardless <strong>of</strong><br />

the temperature in Z<br />

conf<br />

sg the conformational entropy per molar structural unit at Tg hx is also given by rewriting the modified Flory’s equation, which expresses the melting<br />

point depression as a function <strong>of</strong> the mole fraction <strong>of</strong> major component, X, for binary random<br />

copolymers: 24-27<br />

( )<br />

h ≈2h 1−1/ a<br />

[5.2.18]<br />

x u<br />

0<br />

witha=-hu(1/Tm(X)-1/Tm)/(RlnX) where:<br />

Tm(X) the melting temperature for a copolymer with X<br />

0<br />

the melting temperature for a homopolymer <strong>of</strong> major component<br />

T m<br />

Table 5.2.2<br />

Polymer<br />

hu<br />

cal/mol<br />

N6 5100<br />

N66 10300<br />

hx(eq.[5.2.17])<br />

cal/mol<br />

9590<br />

(10070)<br />

19300<br />

(20280)<br />

iPP 1900<br />

1600<br />

(1780)<br />

iPS 2390 12 5030<br />

(5550)<br />

PET 5500<br />

5380<br />

(5670)<br />

hx(eq.[5.2.17]) - hu<br />

cal/mol<br />

4490<br />

(4970)<br />

9000<br />

(9980)<br />

hx (eq.[5.2.18])<br />

cal/mol<br />

hx from δ p<br />

cal/mol<br />

4830 -<br />

9580 10070<br />

- 1470 1420<br />

2640<br />

(3160)<br />

- 2410 - 5790<br />

- 6600 6790<br />

The numerical values in parentheses were calculated using equation [5.2.17] with the second term <strong>of</strong> T g{s g conf -<br />

(RlnZ 0)/x}.<br />

Table 5.2.2 shows the numerical values <strong>of</strong> h x from equations [5.2.17] and [5.2.18], and<br />

from the reference values 7,8 <strong>of</strong> δ p using equations [5.2.1] ~ [5.2.4], together with the<br />

values 12,28,29 <strong>of</strong> h u, for several polymers. The second term in the right hand side <strong>of</strong> equation<br />

[5.2.17] was calculated from {RT gln(Z g/Z 0)}/x. The numerical values in parentheses, which<br />

were calculated using equation [5.2.17] with the second term <strong>of</strong> T g{s g conf - (RlnZ0)/x}, are a<br />

little more than in the case <strong>of</strong> {RT gln(Z g/Z 0)}/x. The relationship <strong>of</strong> h x(eq.[5.2.17]) � � �<br />

found for N6 and N66 suggests two layer structure <strong>of</strong> ordered parts in the glasses, because,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!