28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

182 Christian Wohlfarth<br />

where:<br />

I excess<br />

excess scattering intensity<br />

T absolute temperature<br />

Δ mixG Gibbs free energy <strong>of</strong> mixing.<br />

ϕi volume fractions <strong>of</strong> component i (= i th polymer species in the molecular distribution)<br />

P(θ) properly averaged particle scattering factor<br />

θ scattering angle from the transmitted beam<br />

The determinant in the denominator is to be calculated at constant temperature and<br />

2<br />

2<br />

pressure. It reduces to the single second derivative ( ∂ Δmix G/ ∂ ϕ2) P,T = ( ∂μ1/ ∂ϕ2)<br />

P,T for<br />

the case <strong>of</strong> a strictly binary monodisperse polymer solution. The average particle scattering<br />

factor is <strong>of</strong> primary importance in studies <strong>of</strong> the size and shape <strong>of</strong> the macromolecules, but it<br />

is merely a constant for thermodynamic considerations.<br />

Conventionally, the so-called Rayleigh factor (or ratio) is applied:<br />

R<br />

() θ<br />

excess<br />

I r<br />

≡<br />

IV<br />

0 0<br />

2<br />

2 ( 1+ cos θ)<br />

where:<br />

R(θ) Rayleigh factor<br />

I0 incident intensity <strong>of</strong> unpolarized light<br />

r 2<br />

square <strong>of</strong> the distance between sample and detector<br />

V0 detected scattering volume<br />

and, neglecting P(θ), Equations [4.4.39 and 4.4.40] can be transformed to:<br />

where:<br />

R<br />

() θ<br />

≡<br />

RTKϕ V<br />

2 1<br />

( ∂μ / ∂ϕ )<br />

1 2<br />

PT ,<br />

[4.4.40]<br />

[4.4.41]<br />

V1 partial molar volume <strong>of</strong> the solvent in the polymer solution at temperature T<br />

ϕ 2 volume fraction <strong>of</strong> the monodisperse polymer<br />

K optical constant<br />

The optical constant for unpolarized light summarizes the optical parameters<br />

<strong>of</strong> the experiment:<br />

2<br />

4<br />

( / 2)<br />

/ ( 0)<br />

2 2<br />

K ≡ 2π n dn dc N λ<br />

o PT , Av<br />

[4.4.42]<br />

where:<br />

no refractive index <strong>of</strong> the pure solvent<br />

n refractive index <strong>of</strong> the solution<br />

c2 mass by volume concentration c2 =m2/ν NAv Avogadro’s number<br />

λ0 wavelength <strong>of</strong> light in vacuum<br />

For dilute polymer solutions, the partial derivative in Equation [4.4.41] is a weak function<br />

<strong>of</strong> composition and the scattering intensity increases roughly proportional to the volume<br />

fraction <strong>of</strong> the polymer. While Equation [4.4.41] permits any light scattering data to be

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!