28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

358 Semyon Levitsky, Zinoviy Shulman<br />

where:<br />

Gik partial modules, corresponding to λik δ(λ - λik) Dirac delta function<br />

In this case the integration over the spectrum in Equation [7.2.8] is replaced by summation<br />

over all relaxation times, λik. For polymeric solutions, as distinct to melts, it is convenient to introduce in the<br />

right-hand sides <strong>of</strong> equations [7.2.4] additional terms, 2ηssij and 3ρ0ηvekk, which represent<br />

contributions <strong>of</strong> shear, ηs, and bulk, ηv, viscosities <strong>of</strong> the solvent. The result has the form<br />

t ∞<br />

⎛ t − t′<br />

⎞<br />

τij = 2∫∫F() λ ⎜−<br />

⎟ sij () t′ dλdt′ 1 exp + 2ηssij<br />

[7.2.10]<br />

⎝ λ ⎠<br />

−∞ 0<br />

t<br />

t ∞<br />

t t<br />

p = p − G ekk() t′ dt′− ⎛ − ′ ⎞<br />

0 20∫ ∫ ∫ F2()<br />

λ exp⎜− ⎟ ekk() t′ dλdt′+ G30θ+<br />

⎝ λ ⎠<br />

−∞<br />

−∞ 0<br />

() ′<br />

∞<br />

⎛ − ′ ⎞<br />

+ ∫ ∫ () ⎜−<br />

⎟ ′ − =−<br />

⎝ ⎠ ′<br />

F<br />

t<br />

t t ∂θ t<br />

3 λ exp dλdt ρ0ηvekk, p 1/ 3σ<br />

kk [7.2.11]<br />

λ ∂t<br />

−∞ 0<br />

Equilibrium values <strong>of</strong> bulk and shear viscosity, η b and η p, can be expressed in terms <strong>of</strong><br />

the relaxation spectra, F 1 and F 2, as: 1<br />

∞<br />

∞<br />

η − η = λF λ dλ, η − η = λF λ dλ<br />

[7.2.12]<br />

() ∫ ()<br />

p s ∫ 1 b v<br />

2<br />

0<br />

0<br />

In the special case when relaxation spectrum, F 1(λ), contains only one relaxation time,<br />

λ 11, equation [7.2.10] yields<br />

τ<br />

t<br />

t − t′<br />

= G −<br />

λ<br />

⎛ ⎞<br />

2 11<br />

2<br />

−∞ ⎝ 11 ⎠<br />

∫ exp ⎜<br />

⎟<br />

s () t′ dt′ + ηssij,<br />

G11<br />

= ( − )<br />

ij ij<br />

η η λ<br />

p s / 11 [7.2.13]<br />

At η s = 0 the integral equation [7.2.13] is equivalent to the linear differential Maxwell<br />

equation<br />

τ λ τ η s<br />

+ � = 2<br />

[7.2.14]<br />

ij 11 ij p ij<br />

Setting η s = λ 2η 0/λ 1, λ 1 = λ 11, η p = η 0, where λ 2 is the retardation time, one can rearrange<br />

equation [7.2.14] to receive the linear Oldroyd equation 3<br />

( s s )<br />

τ + λ �τ = 2η<br />

+ λ � , λ ≥λ<br />

[7.2.15]<br />

ij 1 ij 0 ij ij ij 1 2<br />

Thus, the Oldroyd model represents a special case <strong>of</strong> the general hereditary model<br />

[7.2.10] with appropriate choice <strong>of</strong> parameters. Usually the maximum relaxation time in the<br />

spectrum is taken for λ 1 in equation [7.2.15] and therefore it can be used for quantitative description<br />

and estimates <strong>of</strong> relaxation effects in non-steady flows <strong>of</strong> polymeric systems.<br />

Equation [7.2.11], written for quasi-equilibrium process, helps to clarify the meaning<br />

<strong>of</strong> the modules G 20 and G 30. In this case it gives

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!