28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

864 M Matsumoto, S Isken, JAMdeBont<br />

products are insoluble in an aqueous solution but dissolve in some organic solvents. The attempt<br />

was successful. The conversion <strong>of</strong> cholesterol was more than 98% and the yield <strong>of</strong> oxidative<br />

products was 80%.<br />

Speelmans et al. 50 reported on the bioconversion <strong>of</strong> limonene to perillic acid by a solvent-tolerant<br />

Pseudomonas putida. The microbial toxicity <strong>of</strong> limonene is known to be very<br />

high. It is a major component <strong>of</strong> citrus essential oil and is a cheap and readily available base<br />

material. By using a solvent-tolerant strain perillic acid was obtained at a high concentration.<br />

This finding brings commercial production nearer.<br />

The applications <strong>of</strong> solvent-tolerant strains in microbial production processes are at<br />

present limited, but two strategic options are currently available to use such bacteria. 20 Relevant<br />

genes can be introduced into solvent-tolerant organisms in order to produce the required<br />

product. This approach has been followed successfully by J. Wery in our laboratory<br />

who employed an 1-octanol-aqueous system. Methylcatechol was produced from toluene<br />

by solvent tolerant P. putida S12. Alternatively, the efflux pump can be expressed in a suitable<br />

solvent-sensitive host which would then be more tolerant for a particular solvent.<br />

Other benefits may arrive from solvent-resistant bacteria. Ogino et al. 26 isolated Pseudomonas<br />

aeruginosa LST-03 which can grow in organic solvents with logPO/W >2.4 and secrets<br />

organic solvent-stable lipolytic enzymes. They were able to purify an organic<br />

solvent-stable protease which was more stable than the commercially available proteases. 51<br />

Hence, solvent-tolerant strains have become a source for new enzymes. 52<br />

In the near future, the use <strong>of</strong> solvent-tolerant strains will make the application <strong>of</strong> organic<br />

solvents in biotransformations by whole cells a more realistic option.<br />

References<br />

1 R. León, P. Fernandes, H.M. Pinheiro, and J.M.S. Cabral, Enz. Microb. Technol., 23, 483 (1998).<br />

2 B. Angelova and H.S. Schmauder, J. Biotechnol., 67, 13 (1999).<br />

3 C. Laane, S. Boeren, K. Vos, and C. Veeger, Biotechnol. Bioeng., 30, 81 (1987).<br />

4 A.M. Klibanov, Trends Biotechnol., 15, 97 (1997).<br />

5 Y. Inada, A. Matsushima, M. Hiroto, H. Nishimura, and Y. Kodera, Methods Enzymol., 242, 65 (1994).<br />

6 Y. Okahata, Y. Fujimoto, and K. Iijiro, J. Org. Chem., 60, 2244 (1995).<br />

7 R.G. Mathys, A. Schmid, and B. Witholt, Biotechnol. Bioeng., 64, 459 (1999).<br />

8 W.Y. Choi, C.Y. Choi, J.A.M. de Bont, and C.A.G.M. Weijers, Appl. Microbiol. Biotechnol., 53, 7 (1999).<br />

9 R. Bar, J. Chem. Technol. Biotechnol., 43, 49 (1988).<br />

10 J. Sikkema, J.A.M. de Bont, and B. Poolman, Microbiol. Rev., 59, 201 (1995).<br />

11 M.D. Lilly and J.M. Woodley, in Biocatalysis in organic synthesis, J. Tramper, H.C. van der Plas, and<br />

P. Linko, Ed., Elsevier, Amsterdam, 1985, pp.179-192.<br />

12 M. Vermuë, J. Sikkema, A. Verheul, and J. Tramper, Biotechnol. Bioeng., 42, 747 (1993).<br />

13 S.D. Doig, A.T. Boam, D.J. Leak, A.G. Livingston, and D.C. Stuckey, Biocatal. Biotransform., 16, 27<br />

(1998).<br />

14 A. Inoue and K. Horikoshi, J. Ferment. Bioeng., 71, 194 (1991).<br />

15 A.J. Harrop, M.D. Hocknull, and M.D. Lilly, Biotechnol. Lett., 11, 807 (1989).<br />

16 A.N. Rajagopal, Enz. Microb. Technol., 19, 606 (1996).<br />

17 J. Sikkema, J.A.M. de Bont, and B. Poolman, J. Biol. Chem., 269, 8022 (1994).<br />

18 H. Sandermann, Jr., Biochim. Biophys. Acta, 515, 209 (1978).<br />

19 P.L. Yeagle, FASEB J., 3, 1833 (1989).<br />

20 J.A.M. de Bont, Trends Biotechnol., 16, 493 (1998).<br />

21 A. Inoue and K. Horikoshi, Nature, 338, 264 (1989).<br />

22 D.L. Cruden, J.H. Wolfram, R.D. Rogers, and D.T. Gibson, Appl. Environ. Microbiol., 58, 2723 (1992).<br />

23 F.J. Weber, L.P. Ooykaas, R.M.W. Schemen, S. Hartmans, and J.A.M. de Bont, Appl. Environ. Microbiol.,<br />

59, 3502 (1993).<br />

24 J.L. Ramos, E. Deque, M.J. Huertas, and A. Haïdour, J. Bacteriol., 177, 3911 (1995).<br />

25 K. Kim, S.J. Lee, K.H. Lee, and D.B. Lim, J. Bacteriol., 180, 3692 (1998).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!