28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

172 Christian Wohlfarth<br />

L L s<br />

Ω1 = 1 1 = 1 1 1<br />

L s ( B11 −V1)( P −P1)<br />

⎡<br />

⎤<br />

a / w ( P / w P ) exp ⎢<br />

⎥ [4.4.22c]<br />

⎣⎢<br />

RT<br />

⎦⎥<br />

These relations can be applied to VLE-data from all experimental methods.<br />

The data reduction for infinite dilution IGC starts with the usually obtained terms <strong>of</strong><br />

retention volume or net retention volume.<br />

where:<br />

Vnet = Vr− Vdead<br />

[4.4.23]<br />

Vnet Vr Vdead net retention volume<br />

retention volume<br />

retention volume <strong>of</strong> the (inert) marker gas, dead retention, gas holdup<br />

These retention volumes are reduced to specific ones by division <strong>of</strong> Equation<br />

[4.4.23] with the mass <strong>of</strong> the liquid (here the liquid, molten polymer), corrected for the pressure<br />

difference between column inlet and outlet pressure and reduced to T 0 = 273.15K.<br />

where:<br />

V<br />

0<br />

g<br />

V<br />

=<br />

m<br />

⎛<br />

⎜<br />

⎝<br />

0<br />

Vg m2 Pin Pout ( P / P )<br />

( P P )<br />

⎞⎛T<br />

3 1<br />

0 ⎞<br />

−<br />

⎟<br />

⎟⎜<br />

⎟<br />

3<br />

⎠⎝<br />

T ⎠2<br />

/ −1<br />

net in out<br />

2<br />

in out<br />

2<br />

specific retention volume corrected to 0 o C<br />

mass <strong>of</strong> the polymer in the liquid phase within the column<br />

column inlet pressure<br />

column outlet pressure<br />

[4.4.24]<br />

0<br />

Theory <strong>of</strong> GLC provides the relation between Vg and thermodynamic data<br />

for the low-molecular component (solvent) 1 at infinite dilution:<br />

∞ ∞<br />

⎛ P ⎞ 1 TR 0<br />

⎜ ⎟<br />

⎜ L<br />

0<br />

⎝x<br />

⎟<br />

1 ⎠ VgM =<br />

2<br />

or<br />

⎛ P ⎞ 1 TR 0<br />

⎜ ⎟<br />

⎜ L<br />

0<br />

⎝w<br />

⎟<br />

1 ⎠ VgM =<br />

1<br />

[4.4.25]<br />

where:<br />

M2 molar mass <strong>of</strong> the liquid (molten) polymer<br />

M1 molar mass <strong>of</strong> the low-molecular component (solvent).<br />

The activity coefficients at infinite dilution follow immediately from Equation<br />

[4.4.22] by introducing the above result, if we neglect interactions to and between carrier<br />

gas molecules (which is normally helium):<br />

⎛<br />

∞<br />

= ⎜<br />

⎜<br />

⎝<br />

γ 1<br />

TR<br />

0<br />

0 s<br />

VgM2P1 L s ( B11 −V1)( P −P1)<br />

⎞ ⎡<br />

⎤<br />

⎟exp<br />

⎢<br />

⎥<br />

[4.4.26a]<br />

⎟<br />

⎠ ⎣⎢<br />

RT<br />

⎦⎥

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!