28.02.2013 Views

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

Handbook of Solvents - George Wypych - ChemTech - Ventech!

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

512 Y. Y. Fialkov, V. L. Chumak<br />

where:<br />

m the number <strong>of</strong> component moles.<br />

Mass fraction, P, equals to:<br />

i= i<br />

∑<br />

P = g / g<br />

i i<br />

i=<br />

1<br />

where:<br />

g mass <strong>of</strong> a component.<br />

It is evident that for a solvent mixture, whose components do not interact:<br />

∑ ∑ ∑<br />

[9.17]<br />

V = X = P =1 [9.18]<br />

and expressed in percent<br />

∑<br />

∑<br />

∑<br />

V = X = P =<br />

100 100 100 100<br />

[9.19]<br />

Fractions (percentage) [9.19] <strong>of</strong> mixed solvents, since they are calculated for initial<br />

quantities (volumes) <strong>of</strong> components, are called analytical. In the overwhelming majority <strong>of</strong><br />

cases, analytical fractions (percentages) are used in the practice <strong>of</strong> mixed solvents application.<br />

However, in mixed solvents A-B, whose components interact with formation <strong>of</strong> adducts,<br />

AB, AB 2, it is possible to use veritable fractions to express their composition. For example,<br />

if the equilibrium A+B ↔ AB establishes, veritable mole fraction <strong>of</strong> A component<br />

equals to:<br />

( )<br />

N = m / m + m + m<br />

[9.20]<br />

A A A B AB<br />

where:<br />

mi number <strong>of</strong> moles <strong>of</strong> equilibrium participants<br />

In the practice <strong>of</strong> mixed solvents application, though more seldom, molar, cM, and<br />

molal, cm, concentrations are used. Correlations between these various methods <strong>of</strong> concentration<br />

expression are shown in Table 9.1.<br />

Table 9.1. Correlation between various methods <strong>of</strong> expression <strong>of</strong> binary solvent A-B<br />

concentration (everywhere - concentration <strong>of</strong> component A)<br />

Argument<br />

Function<br />

x V P cM cm<br />

x VθB /( θA −σθV) PM B /( M A −σMP) cMθB /( 10 ρ cMσM)<br />

3 − cmMB /( 10 cmMB) 3 +<br />

V xθA /( σθx + θB)<br />

PρB /( ρA −σ pP)<br />

cMθ A /10 3<br />

c M θ /( 10 θ c M θ )<br />

3<br />

+<br />

m B A B m B A<br />

P xM A /( σ Mx+ M B)<br />

VρA /( σ pV + ρB)<br />

cMMA /10 3 ρ cmMA /( 10 cmMA) 3 +<br />

cM 10 3 ρx /( σ x M )<br />

M + B 10 3 V / θA 10 3 ρP MA 3 3<br />

/ 10 ρcm /( 10 + cmMA) 3 3 3 3 3<br />

cm10 x / M ( 1 − x)<br />

10 θ V / M θ ( 1 −V) 10 P / M ( 1 − P)<br />

10 c /( 10 ρ−M<br />

c )<br />

B<br />

B B A<br />

A<br />

M A M<br />

σis the difference between the corresponding properties <strong>of</strong> components, i.e., σ y =y A-y B,ρis density, and θ is molar<br />

volume.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!