18.10.2013 Views

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A polarização da onda eletromagnética 101<<strong>br</strong> />

1,0<<strong>br</strong> />

0,5<<strong>br</strong> />

0,0<<strong>br</strong> />

-0,5<<strong>br</strong> />

θB<<strong>br</strong> />

θC<<strong>br</strong> />

ângulo (graus)<<strong>br</strong> />

ρσ<<strong>br</strong> />

0 15 30 45 60<<strong>br</strong> />

ρπ<<strong>br</strong> />

75 90<<strong>br</strong> />

Fig. 5.16 - Coeficiente de reflexão interna.<<strong>br</strong> />

= E exp i<<strong>br</strong> />

r r<<strong>br</strong> />

k.<<strong>br</strong> />

r −ω<<strong>br</strong> />

t = E exp<<strong>br</strong> />

i k x + k y −ω<<strong>br</strong> />

t<<strong>br</strong> />

{ ( ) } ( )<<strong>br</strong> />

{ }<<strong>br</strong> />

E o<<strong>br</strong> />

o<<strong>br</strong> />

x y<<strong>br</strong> />

(5.31)<<strong>br</strong> />

onde na última passagem usamos o fato que ao onda se propaga no plano<<strong>br</strong> />

r<<strong>br</strong> />

xy ( r = xî<<strong>br</strong> />

+ yjˆ<<strong>br</strong> />

). Note que kx<<strong>br</strong> />

= k senθ e ky<<strong>br</strong> />

= k cosθ são as projeções de<<strong>br</strong> />

k no plano xy. O módulo de k é (ω/c) n<<strong>br</strong> />

r<<strong>br</strong> />

1. No meio com índice n2, o<<strong>br</strong> />

campo elétrico pode ser escrito de maneira similar:<<strong>br</strong> />

r r<<strong>br</strong> />

E " = E"<<strong>br</strong> />

exp { i ( k"<<strong>br</strong> />

. r ωt<<strong>br</strong> />

) } E"<<strong>br</strong> />

exp{<<strong>br</strong> />

i ( k"<<strong>br</strong> />

x k "<<strong>br</strong> />

0 − = 0<<strong>br</strong> />

x + yy<<strong>br</strong> />

−ω<<strong>br</strong> />

t)<<strong>br</strong> />

} (5.32)<<strong>br</strong> />

sendo as projeções de k ” dadas por k<<strong>br</strong> />

r<<strong>br</strong> />

x” = k” senθ” e ky” = k” cosθ”, e seu<<strong>br</strong> />

módulo por k”= (ω/c)n 2. Lem<strong>br</strong>ando que n = n 2/n1, pela lei de Snell temos<<strong>br</strong> />

senθ = n senθ” e consequentemente:<<strong>br</strong> />

2<<strong>br</strong> />

2 2<<strong>br</strong> />

2 2<<strong>br</strong> />

ncosθ<<strong>br</strong> />

" = n 1−<<strong>br</strong> />

sen θ"<<strong>br</strong> />

= n −sen<<strong>br</strong> />

θ = i sen θ−<<strong>br</strong> />

n (5.33)<<strong>br</strong> />

Desta forma, a parte espacial da fase da onda fica:<<strong>br</strong> />

2 2<<strong>br</strong> />

( senθ<<strong>br</strong> />

x + i sen θ − n y)<<strong>br</strong> />

" "<<strong>br</strong> />

k x + k y = k<<strong>br</strong> />

(5.34)<<strong>br</strong> />

x<<strong>br</strong> />

Como i 2 = -1, o campo é dado por:<<strong>br</strong> />

E<<strong>br</strong> />

"<<strong>br</strong> />

y<<strong>br</strong> />

{ i ( k senθ<<strong>br</strong> />

x −ω<<strong>br</strong> />

t)<<strong>br</strong> />

}<<strong>br</strong> />

"<<strong>br</strong> />

= E exp(<<strong>br</strong> />

−αy)<<strong>br</strong> />

exp<<strong>br</strong> />

(5.35)<<strong>br</strong> />

0<<strong>br</strong> />

2 2<<strong>br</strong> />

onde . Note que a luz se propaga paralelamente à<<strong>br</strong> />

α = k sen θ−<<strong>br</strong> />

n<<strong>br</strong> />

interface, na direção do eixo x. Por outro lado, ela penetra no meio menos<<strong>br</strong> />

S. C. Zilio <strong>Óptica</strong> <strong>Moderna</strong> – <strong>Fundamentos</strong> e Aplicações

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!