18.10.2013 Views

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

166<<strong>br</strong> />

−iωt<<strong>br</strong> />

= V0e<<strong>br</strong> />

∫∫<<strong>br</strong> />

S2<<strong>br</strong> />

ik<<strong>br</strong> />

⎡e<<strong>br</strong> />

⎢<<strong>br</strong> />

⎣ ρ<<strong>br</strong> />

ρ<<strong>br</strong> />

r<<strong>br</strong> />

ikρ⎛<<strong>br</strong> />

1 ik ⎞⎤<<strong>br</strong> />

2<<strong>br</strong> />

( − ∇U.<<strong>br</strong> />

rˆ ) + Ue ⎜−<<strong>br</strong> />

+ ⎟ ρ dΩ<<strong>br</strong> />

r=<<strong>br</strong> />

ρ<<strong>br</strong> />

Tomando o limite ρ → 0 obtemos<<strong>br</strong> />

ρ<<strong>br</strong> />

⎥<<strong>br</strong> />

⎠⎦<<strong>br</strong> />

Difração<<strong>br</strong> />

S. C. Zilio <strong>Óptica</strong> <strong>Moderna</strong> – <strong>Fundamentos</strong> e Aplicações<<strong>br</strong> />

⎝<<strong>br</strong> />

ρ<<strong>br</strong> />

2<<strong>br</strong> />

(8.9)<<strong>br</strong> />

= −V<<strong>br</strong> />

exp{<<strong>br</strong> />

− iωt}<<strong>br</strong> />

U(<<strong>br</strong> />

P)∫<<strong>br</strong> />

dΩ<<strong>br</strong> />

=<<strong>br</strong> />

J 0<<strong>br</strong> />

− 4πV0 exp{<<strong>br</strong> />

− iωt}<<strong>br</strong> />

U(P)<<strong>br</strong> />

∫∫ ∫∫ ∫∫ =<<strong>br</strong> />

=<<strong>br</strong> />

⎡<<strong>br</strong> />

4πV<<strong>br</strong> />

exp<<strong>br</strong> />

exp<<strong>br</strong> />

0<<strong>br</strong> />

{ i ( kr − ωt)<<strong>br</strong> />

}<<strong>br</strong> />

. Logo, como = + 0 temos:<<strong>br</strong> />

A S1 S2<<strong>br</strong> />

{ iωt}<<strong>br</strong> />

U(<<strong>br</strong> />

P)<<strong>br</strong> />

= ( V∇U<<strong>br</strong> />

- U∇V)<<strong>br</strong> />

. nˆ dS =<<strong>br</strong> />

− ∫∫S1 r<<strong>br</strong> />

r<<strong>br</strong> />

r<<strong>br</strong> />

{ i ( kr − ωt)<<strong>br</strong> />

} ⎜−<<strong>br</strong> />

+ ⎟ rˆ . nˆ 1dS1<<strong>br</strong> />

∫∫S ⎢V0<<strong>br</strong> />

∇U<<strong>br</strong> />

− UV0<<strong>br</strong> />

exp<<strong>br</strong> />

2<<strong>br</strong> />

1 r<<strong>br</strong> />

r r<<strong>br</strong> />

⎥<<strong>br</strong> />

⎣<<strong>br</strong> />

⎝ ⎠ ⎦ S1<<strong>br</strong> />

que nos leva à equação básica da teoria da difração:<<strong>br</strong> />

4πU<<strong>br</strong> />

⎡e<<strong>br</strong> />

r<<strong>br</strong> />

ikr<<strong>br</strong> />

⎛ ⎞<<strong>br</strong> />

∫∫S ⎢<<strong>br</strong> />

2 ⎥<<strong>br</strong> />

1 ⎣ r ⎝ r r ⎠ ⎦ S1<<strong>br</strong> />

⎛<<strong>br</strong> />

1<<strong>br</strong> />

1<<strong>br</strong> />

1<<strong>br</strong> />

ik ⎞<<strong>br</strong> />

ikr<<strong>br</strong> />

( P)<<strong>br</strong> />

= ∇U<<strong>br</strong> />

− U ⎜ − + ⎟ rˆ e . nˆ 1dS1<<strong>br</strong> />

1<<strong>br</strong> />

ik<<strong>br</strong> />

⎤<<strong>br</strong> />

⎤<<strong>br</strong> />

(8.10)<<strong>br</strong> />

(8.11)<<strong>br</strong> />

Esta expressão é chamada de teorema integral de Kirchhoff. Ela<<strong>br</strong> />

relaciona o valor da função no ponto de observação P com valores desta<<strong>br</strong> />

função e sua derivada so<strong>br</strong>e a superfície S1 que envolve o ponto P. Como<<strong>br</strong> />

tomamos ρ → 0, a Fig. 8.4 se modifica da maneira mostrada na Fig. 8.5.<<strong>br</strong> />

Particularizando a eq. (8.11) para o caso em que U é também uma onda<<strong>br</strong> />

esférica da forma:<<strong>br</strong> />

U 0<<strong>br</strong> />

U( r1,<<strong>br</strong> />

t)<<strong>br</strong> />

= exp{<<strong>br</strong> />

i ( kr1<<strong>br</strong> />

− ωt)}<<strong>br</strong> />

(8.12)<<strong>br</strong> />

r<<strong>br</strong> />

1<<strong>br</strong> />

o teorema integral de Kirchhoff pode ser escrito de forma mais explícita<<strong>br</strong> />

como:<<strong>br</strong> />

4<<strong>br</strong> />

( P)<<strong>br</strong> />

−iωt<<strong>br</strong> />

πU = ikU 0e<<strong>br</strong> />

∫∫S<<strong>br</strong> />

1<<strong>br</strong> />

exp<<strong>br</strong> />

{ ik(<<strong>br</strong> />

r1<<strong>br</strong> />

+ r2<<strong>br</strong> />

) }<<strong>br</strong> />

[ cosθ1<<strong>br</strong> />

− cosθ<<strong>br</strong> />

2 ] dS1<<strong>br</strong> />

r r<<strong>br</strong> />

1 2<<strong>br</strong> />

ikr2<<strong>br</strong> />

ikr1<<strong>br</strong> />

−iωt<<strong>br</strong> />

⎡e<<strong>br</strong> />

e ⎤<<strong>br</strong> />

− U 0e<<strong>br</strong> />

∫∫ ⎢ cos θ1<<strong>br</strong> />

− cos θ 2 ⎥ dS1<<strong>br</strong> />

(8.13)<<strong>br</strong> />

S 2<<strong>br</strong> />

2<<strong>br</strong> />

1 ⎣r2<<strong>br</strong> />

r1<<strong>br</strong> />

r1r2<<strong>br</strong> />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!