18.10.2013 Views

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Difração 171<<strong>br</strong> />

U<<strong>br</strong> />

b / 2<<strong>br</strong> />

( P)<<strong>br</strong> />

≈ CL exp{<<strong>br</strong> />

ikr } exp ik(<<strong>br</strong> />

r + ysenθ)<<strong>br</strong> />

1 ∫ −b<<strong>br</strong> />

/ 2<<strong>br</strong> />

b / 2<<strong>br</strong> />

{ ik(<<strong>br</strong> />

r + r ) } exp{<<strong>br</strong> />

= CLexp<<strong>br</strong> />

1 0<<strong>br</strong> />

14424443<<strong>br</strong> />

C′<<strong>br</strong> />

∫ −b<<strong>br</strong> />

/ 2<<strong>br</strong> />

{ }dy<<strong>br</strong> />

Esta última integral é fácil de ser calculada e nos leva a:<<strong>br</strong> />

U(<<strong>br</strong> />

P)<<strong>br</strong> />

exp<<strong>br</strong> />

= C′<<strong>br</strong> />

ik sen θ<<strong>br</strong> />

kb<<strong>br</strong> />

Fazendo β = senθ<<strong>br</strong> />

, temos:<<strong>br</strong> />

2<<strong>br</strong> />

U<<strong>br</strong> />

S. C. Zilio <strong>Óptica</strong> <strong>Moderna</strong> – <strong>Fundamentos</strong> e Aplicações<<strong>br</strong> />

0<<strong>br</strong> />

ikysenθ}<<strong>br</strong> />

dy (8.20)<<strong>br</strong> />

b / 2<<strong>br</strong> />

kb<<strong>br</strong> />

{ ikysen<<strong>br</strong> />

θ}<<strong>br</strong> />

sen(<<strong>br</strong> />

sen θ)<<strong>br</strong> />

−b<<strong>br</strong> />

/ 2<<strong>br</strong> />

( P)<<strong>br</strong> />

C′<<strong>br</strong> />

b ⇒ I(<<strong>br</strong> />

P)<<strong>br</strong> />

= C′<<strong>br</strong> />

b<<strong>br</strong> />

2<<strong>br</strong> />

kb<<strong>br</strong> />

2<<strong>br</strong> />

sen θ<<strong>br</strong> />

(8.21)<<strong>br</strong> />

senβ<<strong>br</strong> />

sen 2 β<<strong>br</strong> />

= = I0<<strong>br</strong> />

(8.22)<<strong>br</strong> />

β<<strong>br</strong> />

β2<<strong>br</strong> />

O padrão de difração I(P) está mostrado na Fig. 8.11. O máximo<<strong>br</strong> />

central ocorre para β = 0 (θ = 0) enquanto que os mínimos localizam-se<<strong>br</strong> />

em β = ± n π, onde n é um inteiro. I(P) terá máximos relativos para β = ±<<strong>br</strong> />

l,43 π, ± 2,46π, etc. que são raízes de β = tgβ.<<strong>br</strong> />

-2π<<strong>br</strong> />

−-π<<strong>br</strong> />

I0<<strong>br</strong> />

I(β)<<strong>br</strong> />

π 2π<<strong>br</strong> />

Fig. 8.11 - Padrão de difração para uma fenda estreita.<<strong>br</strong> />

Consideremos apenas a franja central para deduzir uma expressão<<strong>br</strong> />

para o ângulo no qual a luz se espalha. Para este fim vamos considerar a<<strong>br</strong> />

Fig. 8.12. Como os primeiros mínimos ocorrem para β = ±π e θ = φ/2,<<strong>br</strong> />

temos:<<strong>br</strong> />

β

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!