18.10.2013 Views

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Coerência 151<<strong>br</strong> />

A segunda somatória é nula pois as variações de fase são<<strong>br</strong> />

aleatórias e quando somamos exp{i Δ n+1}, os vários termos se cancelam.<<strong>br</strong> />

Assim sendo, substituímos a eq. (7.14) em (7.13) e obtemos:<<strong>br</strong> />

γ<<strong>br</strong> />

12<<strong>br</strong> />

Caso b)<<strong>br</strong> />

⎡ 1 ⎤ ⎛ τ ⎞<<strong>br</strong> />

exp ⎢<<strong>br</strong> />

0 ⎥ ⎜<<strong>br</strong> />

(7.15)<<strong>br</strong> />

n→∞<<strong>br</strong> />

⎣nτ<<strong>br</strong> />

0 ⎦ ⎝ τ0<<strong>br</strong> />

⎠<<strong>br</strong> />

() { } { } ⎟ τ = iωτ<<strong>br</strong> />

lim n(<<strong>br</strong> />

τ − τ)<<strong>br</strong> />

= exp iωτ<<strong>br</strong> />

⎜1−<<strong>br</strong> />

τ> τ0<<strong>br</strong> />

Agora, Δφ será sempre diferente de zero, pois em t e t +τ0 as fases<<strong>br</strong> />

são diferentes. Assim, temos um termo exp iΔ<<strong>br</strong> />

= e não teremos<<strong>br</strong> />

o termo não nulo em que Δφ = 0. Logo, para<<strong>br</strong> />

γ () τ = 0 .<<strong>br</strong> />

12<<strong>br</strong> />

[ ] 0<<strong>br</strong> />

S. C. Zilio <strong>Óptica</strong> <strong>Moderna</strong> – <strong>Fundamentos</strong> e Aplicações<<strong>br</strong> />

∑<<strong>br</strong> />

n 0<<strong>br</strong> />

∞<<strong>br</strong> />

=<<strong>br</strong> />

n + 1<<strong>br</strong> />

τ > τ teremos sempre<<strong>br</strong> />

Para utilizarmos a eq. (7.4), devemos tomar a parte real de γ12(τ),<<strong>br</strong> />

dada por:<<strong>br</strong> />

⎧ ⎛ τ ⎞<<strong>br</strong> />

⎪cos<<strong>br</strong> />

ωτ<<strong>br</strong> />

τ τ<<strong>br</strong> />

() ⎨ ⎜<<strong>br</strong> />

⎜1<<strong>br</strong> />

−<<strong>br</strong> />

⎟ para < 0<<strong>br</strong> />

Re γ12<<strong>br</strong> />

τ =<<strong>br</strong> />

⎝ τ<<strong>br</strong> />

(7.16)<<strong>br</strong> />

0 ⎠<<strong>br</strong> />

⎪⎩ 0<<strong>br</strong> />

para τ > τ<<strong>br</strong> />

Com este resultado, podemos fazer o gráfico de I(τ), mostrado na Fig. 7.4.<<strong>br</strong> />

= I = I<<strong>br</strong> />

2I<<strong>br</strong> />

1+<<strong>br</strong> />

cos ωτ 1−<<strong>br</strong> />

τ / τ<<strong>br</strong> />

Se I [ ( )( ) ]<<strong>br</strong> />

1 2 0, temos I(τ) = 0<<strong>br</strong> />

0 para τ < τ0 e 2I0<<strong>br</strong> />

para τ > τ .<<strong>br</strong> />

0<<strong>br</strong> />

( ) 2<<strong>br</strong> />

I + I<<strong>br</strong> />

1<<strong>br</strong> />

I + I<<strong>br</strong> />

2<<strong>br</strong> />

( ) 2<<strong>br</strong> />

I − I<<strong>br</strong> />

1<<strong>br</strong> />

1<<strong>br</strong> />

2<<strong>br</strong> />

2<<strong>br</strong> />

I(τ)<<strong>br</strong> />

Fig. 7.4 - Interferência entre dois feixes parcialmente coerentes.<<strong>br</strong> />

τ0<<strong>br</strong> />

0<<strong>br</strong> />

τ<<strong>br</strong> />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!