18.10.2013 Views

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

Óptica Moderna Fundamentos e aplicações - Fotonica.ifsc.usp.br ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

106<<strong>br</strong> />

Jones escreveu este campo da forma matricial:<<strong>br</strong> />

E r<<strong>br</strong> />

A polarização da onda eletromagnética<<strong>br</strong> />

⎛ E0x<<strong>br</strong> />

⎜<<strong>br</strong> />

⎝E<<strong>br</strong> />

0ye<<strong>br</strong> />

= −iδ<<strong>br</strong> />

⎞<<strong>br</strong> />

⎟<<strong>br</strong> />

⎠<<strong>br</strong> />

(5.41)<<strong>br</strong> />

Usando este formalismo podemos escrever o campo elétrico para<<strong>br</strong> />

as várias polarizações já vistas:<<strong>br</strong> />

⎛E<<strong>br</strong> />

0x<<strong>br</strong> />

⎞<<strong>br</strong> />

(a) LP (δ = 0)<<strong>br</strong> />

E = ⎜ ⎟<<strong>br</strong> />

(5.42a)<<strong>br</strong> />

⎝E<<strong>br</strong> />

0y<<strong>br</strong> />

⎠<<strong>br</strong> />

(b) CPH (δ = π/2)<<strong>br</strong> />

(c) CPAH (δ = - π/2)<<strong>br</strong> />

r<<strong>br</strong> />

⎛ E<<strong>br</strong> />

⎜<<strong>br</strong> />

⎝E<<strong>br</strong> />

e ainda definir operações tais como:<<strong>br</strong> />

(i) Soma:<<strong>br</strong> />

⎞ ⎛ 1 ⎞<<strong>br</strong> />

⎟ = E ⎜ ⎟<<strong>br</strong> />

⎠ ⎝−<<strong>br</strong> />

i⎠<<strong>br</strong> />

0<<strong>br</strong> />

E = −iπ<<strong>br</strong> />

/ 2 0<<strong>br</strong> />

0e<<strong>br</strong> />

r<<strong>br</strong> />

⎛ E<<strong>br</strong> />

⎜<<strong>br</strong> />

⎝E<<strong>br</strong> />

0e<<strong>br</strong> />

⎞ ⎛1⎞<<strong>br</strong> />

⎟ = E ⎜ ⎟<<strong>br</strong> />

⎠ ⎝i<<strong>br</strong> />

⎠<<strong>br</strong> />

0<<strong>br</strong> />

E = iπ<<strong>br</strong> />

/ 2 0<<strong>br</strong> />

r r<<strong>br</strong> />

E + E'<<strong>br</strong> />

=<<strong>br</strong> />

(5.42b)<<strong>br</strong> />

(5.42c)<<strong>br</strong> />

⎛ 1 ⎞ ⎛1⎞<<strong>br</strong> />

⎛1<<strong>br</strong> />

⎞<<strong>br</strong> />

⎜ ⎟ + E ⎜ ⎟ = ⎜ ⎟<<strong>br</strong> />

0 2E<<strong>br</strong> />

⎝−<<strong>br</strong> />

i⎠<<strong>br</strong> />

⎝i<<strong>br</strong> />

⎠ ⎜ ⎟<<strong>br</strong> />

⎝0⎠<<strong>br</strong> />

E 0<<strong>br</strong> />

0<<strong>br</strong> />

E<<strong>br</strong> />

⎛a<<strong>br</strong> />

⎞<<strong>br</strong> />

= ⎜ ⎟<<strong>br</strong> />

⎝b<<strong>br</strong> />

⎠<<strong>br</strong> />

r<<strong>br</strong> />

E' ⎛ c ⎞<<strong>br</strong> />

= ⎜ ⎟<<strong>br</strong> />

⎝d<<strong>br</strong> />

⎠<<strong>br</strong> />

r<<strong>br</strong> />

(ii) Produto escalar: tomando e temos:<<strong>br</strong> />

r<<strong>br</strong> />

E<<strong>br</strong> />

r<<strong>br</strong> />

E<<strong>br</strong> />

r<<strong>br</strong> />

E'<<strong>br</strong> />

r<<strong>br</strong> />

E'<<strong>br</strong> />

⎛c<<strong>br</strong> />

⎞<<strong>br</strong> />

= ( a * b*<<strong>br</strong> />

) ⎜ ⎟ = a * c + b*<<strong>br</strong> />

d . Dois vetores são ortogonais quando<<strong>br</strong> />

⎝d<<strong>br</strong> />

⎠<<strong>br</strong> />

= 0 . Como exemplo, temos: e , e<<strong>br</strong> />

Dentro desta abordagem podemos associar, a cada sistema óptico,<<strong>br</strong> />

uma matriz que modifica o campo incidente, dando origem ao campo<<strong>br</strong> />

emergente desejado, de maneira análoga ao que foi feito na óptica<<strong>br</strong> />

geométrica. Vamos escrever as matrizes para os elementos já vistos:<<strong>br</strong> />

S. C. Zilio <strong>Óptica</strong> <strong>Moderna</strong> – <strong>Fundamentos</strong> e Aplicações

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!