03.01.2015 Views

THÈSE DE DOCTORAT Ecole Doctorale « Sciences et ...

THÈSE DE DOCTORAT Ecole Doctorale « Sciences et ...

THÈSE DE DOCTORAT Ecole Doctorale « Sciences et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Annexe D. Théorèmes du p<strong>et</strong>it gain pour des systèmes paramétrés 217<br />

vérifient :<br />

|ω 1 (x 1 (t))| ≤ max { β 1 (|ω 1 (x 1 (t 0 ))|,t − t 0 ),γ ωa 2<br />

1 (τ,‖ωa 2 (x 2)‖ [t0 ,t)),<br />

γ ωb 2<br />

1 (τ,‖ωb 2(x 2 )‖ [t0 ,t)),γ u 1 (τ, ‖u 1 ‖ [t0 ,t) )} (D.159)<br />

|x 1 (t)| ≤ max { α 1 (|x 1 (t 0 )|),η ω 1<br />

1 (τ, ‖ω 1(x 1 )‖ [t0 ,t) ),ηωa 2<br />

1 (τ,‖ωa 2 (x 2)‖ [t0 ,t)),<br />

η ωb 2<br />

1 (τ,‖ωb 2(x 2 )‖ [t0 ,t)),η u 1 (τ, ‖u 1 ‖ [t0 ,t) )} , (D.160)<br />

pour tout x 2 (t 0 ) ∈ R nx 2 , (x 1 ,u 2 ) ∈ L nx 1 +nu 2<br />

∞ , τ ∈ [υ,¯τ), <strong>et</strong> t ≥ t 0 ≥ 0, les solutions de (D.125)<br />

vérifient :<br />

|ω a 2 (x 2(t))| ≤ max { β 2 (|ω 2 (x 2 (t 0 ))|,t − t 0 ),γ ω 1<br />

2 (‖ω 1(x 1 )‖ [t0 ,t) ),γu 2 (‖u 2‖ [t0 ,t) )} (D.161)<br />

|ω b 2(x 2 (t))| ≤ max { α 2 (|ω b 2(x 2 (t 0 ))|),η ω 1<br />

2 (‖ω 1(x 1 )‖ [t0 ,t) ),ηωa 2<br />

2 (‖ωa 2(x 2 )‖ [t0 ,t)),<br />

η u 2 (‖u 2‖ [t0 ,t) )} ,<br />

(D.162)<br />

<strong>et</strong>, pour tout ∆,ε ∈ R >0 , soit M ∈ R >0 (suffisamment grand) <strong>et</strong> m ∈ R >0 (suffisamment<br />

p<strong>et</strong>it) tels que<br />

{<br />

δ m (¯τ,m) < ε<br />

max { m,˜σ m (¯τ,m),ν x (¯τ,∆),ν u (¯τ,∆) } < M,<br />

où, pour (τ,s) ∈ [υ,¯τ) × R ≥0 :<br />

δ m (τ,s) = max { η˜σ m (τ,s),ηs }<br />

{<br />

ν x (τ,s) = max β 1 (ρ 1 (s),0),γ ωa 2<br />

1 (τ,β 2(ρ 2 (s),0)),γ ωb 2<br />

1 (τ,α 2(ρ 2 (s))),<br />

ν u (τ,s) = max<br />

γ ωb 2<br />

1 (τ,ηωa 2<br />

2 (β 2(ρ 2 (s),0))),β 2 (ρ 2 (s),0),γ ω 1<br />

2 (β 1(ρ 1 (s),0)),<br />

γ ω 1<br />

2 (γωb 2<br />

1 (τ,α 2(ρ 2 (s)))),ρ 1 (s),ρ 2 (s), ˜β(s,0),˜σ<br />

}<br />

x (τ,s)<br />

{<br />

γ ωa 2<br />

1 (τ,γu 2 (s)),γ1 u (τ,s),γ ωb 2<br />

1 (τ,ηωa 2<br />

2 (γu 2 (s))),γ ωb 2<br />

1 (τ,ηu 2 (s)),<br />

γ ω 1<br />

2 (γu 1 (τ,s)),γu 2 (s),γω 1<br />

2 (γωb 2<br />

1 (τ,ηu 2 (s))),˜γu (τ,s)<br />

}<br />

,<br />

(D.163)<br />

avec η > 1, ˜σ m ∈ KK, ˜β ∈ KL, ˜σ x ∈ KK <strong>et</strong> ˜γ u ∈ KK se déduisent respectivement de (D.118),<br />

(D.116), (D.119) <strong>et</strong> (D.122). Il existe τ ∗ (ε,∆) ∈ [υ,¯τ) (défini par (D.168)), que l’on note τ ∗ ,<br />

tel que<br />

{<br />

max γ ωa 2<br />

1 (τ ∗ ,γ ω 1<br />

2 (s)),γωb 2<br />

1 (τ ∗ ,η ωa 2<br />

2 (γω 1<br />

2 (s))),γωb 2<br />

1 (τ ∗ ,η ω 1<br />

2 (s)),γω 1<br />

2 (γωa 2<br />

1 (τ ∗ ,s)),<br />

}<br />

γ ω 1<br />

2 (γωb 2<br />

1 (τ ∗ ,η ωa 2<br />

2 (s))),γω 1<br />

2 (γωb 2<br />

1 (τ ∗ ,η ω 1<br />

2 (s))) < s pour s ∈ [m,M],<br />

alors, il existe µ ∈ R >0 tel que pour tout τ ∈ [υ,τ ∗ ), (x 1 (t 0 ),x 2 (t 0 )) ∈ R nx 1 +nx 2<br />

L nu 1 +nu 2<br />

∞<br />

vérifient :<br />

(D.164)<br />

<strong>et</strong> (u 1 ,u 2 ) ∈<br />

avec max { |x 1 (t 0 )|,|x 2 (t 0 )|, ‖u 1 ‖ ∞ , ‖u 2 ‖ ∞<br />

}<br />

< ∆, les solutions de (D.124)-(D.125)<br />

|(x 1 (t),x 2 (t))| ≤ µ ∀t ≥ t 0 ≥ 0. (D.165)<br />

De plus, il existe β ∈ KL, σ ∈ K, ¯σ ∈ KK tels que pour tout τ ∈ [υ,τ ∗ ), (x 1 (t 0 ),x 2 (t 0 )) ∈<br />

R nx 1 +nx 2 <strong>et</strong> (u 1 ,u 2 ) ∈ L nu 1 +nu 2<br />

∞<br />

avec max { |x 1 (t 0 )|,|x 2 (t 0 )|, ‖u 1 ‖ ∞<br />

, ‖u 2 ‖ ∞<br />

}<br />

< ∆, les solutions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!