25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

100 3. Distributions exponentielles étirées contre distributions régulièrement variables<br />

Now, accounting for the rel<strong>at</strong>ion E1[xc ] = uc +d c , the first and third term within the brack<strong>et</strong>s cancel out, and<br />

accounting for equ<strong>at</strong>ion (104) yields<br />

˜C12(2) = − c∗<br />

d∗ <br />

1<br />

<br />

u<br />

+<br />

c∗ d∗ c∗ <br />

· ln u<br />

<br />

− E ln<br />

d∗ x<br />

d∗ . (110)<br />

Finally, ˜C12 can be consistently estim<strong>at</strong>ed by replacing (c ∗ ,d ∗ ) by (ĉ, ˆ<br />

d) and using the rel<strong>at</strong>ion<br />

L<strong>et</strong> us now <strong>de</strong>fine<br />

g1(x|c ∗ ,d ∗ ) =<br />

<br />

E<br />

ln x<br />

d<br />

∂ln f1(x|c ∗ ,d ∗ )<br />

∂c ∗<br />

∂ln f1(x|c ∗ ,d ∗ )<br />

∂d ∗<br />

g2(x|b ∗ ) = ∂ln f2(x|b ∗ )<br />

∂b ∗<br />

The m<strong>at</strong>rices Ci j are <strong>de</strong>fined as<br />

which can be consistently estim<strong>at</strong>ed by<br />

<br />

= ln u 1<br />

+<br />

d c e( u d ) c <br />

· Γ 0,<br />

<br />

=<br />

<br />

1<br />

c∗ + ln u<br />

d∗ − c∗<br />

d∗ <br />

u<br />

c . (111)<br />

d<br />

<br />

u<br />

d∗ c∗ <br />

+ ln x<br />

d∗ − ln x<br />

d∗ 1 + u<br />

d∗ c∗ − x<br />

d∗ c∗ <br />

x c∗ d<br />

<br />

(112)<br />

= 1<br />

+ lnu − lnx. (113)<br />

b∗<br />

<br />

Ci j = E0 gi(x) · g j(x) t , i, j = 1,2, (114)<br />

Ĉi j = 1<br />

T<br />

T<br />

∑<br />

i=1<br />

D.2 Testing the (SE) mo<strong>de</strong>l against the Par<strong>et</strong>o mo<strong>de</strong>l<br />

gi(x) · g j(x) t , i, j = 1,2. (115)<br />

L<strong>et</strong> us now assume th<strong>at</strong>, beyond a given high threshold u, the true mo<strong>de</strong>l is the Par<strong>et</strong>o mo<strong>de</strong>l, th<strong>at</strong> is, the true<br />

r<strong>et</strong>urns distribution is a power law with pdf<br />

This will be our null hypothesis H0.<br />

f0(x|b) = b ub<br />

, x ≥ u. (116)<br />

xb+1 Now consi<strong>de</strong>r the maximum likelihood estim<strong>at</strong>ors (ĉ, d) ˆ of the mo<strong>de</strong>l (SE). They are solution of equ<strong>at</strong>ions<br />

(46-47)<br />

1<br />

c =<br />

d c = uc<br />

T<br />

1<br />

T ∑T xi<br />

i=1 u<br />

1<br />

T ∑T xi<br />

i=1 u<br />

T <br />

xi<br />

∑<br />

i=1 u<br />

Un<strong>de</strong>r H0, (ĉ, ˆ<br />

d) converges to the pseudo-true values, solutions of<br />

1<br />

c<br />

<br />

x<br />

E0 u = <br />

x<br />

E0 u<br />

c xi ln<br />

u<br />

c −<br />

− 1 1 T<br />

T ∑ ln<br />

i=1<br />

xi<br />

,<br />

u<br />

(117)<br />

c − 1. (118)<br />

c <br />

x ln<br />

u<br />

c − 1 − E0<br />

<br />

ln x<br />

<br />

, (119)<br />

u<br />

d c = E0 [x c ] − u c , (120)<br />

36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!