25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 319<br />

A Proof of the theorem<br />

A.1 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween an ass<strong>et</strong> and the factor<br />

A.1.1 St<strong>at</strong>ement<br />

We consi<strong>de</strong>r two random variables X and Y , rel<strong>at</strong>ed by the rel<strong>at</strong>ion<br />

X = β · Y + ε, (28)<br />

where ε is a random variable in<strong>de</strong>pen<strong>de</strong>nt of Y and β a non-random positive coefficient.<br />

L<strong>et</strong> PY and FY <strong>de</strong>note respectively the <strong>de</strong>nsity with respect to the Lebesgue measure and the<br />

distribution function of the variable Y . L<strong>et</strong> FX <strong>de</strong>notes the distribution function of X and Fε the<br />

distribution function of ε. We st<strong>at</strong>e the following theorem:<br />

Theorem 1<br />

Assuming th<strong>at</strong><br />

H0: The variables Y and ε have distribution functions with infinite support,<br />

H1: For all x ∈ [1, ∞),<br />

lim<br />

t→∞<br />

t PY (tx)<br />

¯<br />

FY (t)<br />

= f(x), (29)<br />

H2: There are real numbers t0 > 0, δ > 0 and A > 0, such th<strong>at</strong> for all t ≥ t0 and all x ≥ 1<br />

H3: There is a constant l ∈ R+, such th<strong>at</strong><br />

¯FY (tx)<br />

¯FY (t)<br />

then, the coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce of (X, Y ) is given by<br />

A.1.2 Proof<br />

λ =<br />

A<br />

≤ , (30)<br />

xδ FX<br />

lim<br />

u→1<br />

−1 (u)<br />

FY −1 = l, (31)<br />

(u)<br />

∞<br />

max{1, l<br />

β }<br />

dx f(x). (32)<br />

We first give a general expression for the probability for X to be larger than F −1<br />

X (u) knowing th<strong>at</strong><br />

(u) :<br />

Y is larger than F −1<br />

Y<br />

Lemma 1<br />

The probability th<strong>at</strong> X is larger than F −1<br />

−1<br />

X (u) knowing th<strong>at</strong> Y is larger than FY (u) is given by :<br />

Pr X > F −1<br />

−1<br />

X (u)|Y > FY (u) =<br />

F −1<br />

Y (u)<br />

1 − u<br />

∞<br />

dx PY<br />

1<br />

20<br />

−1<br />

FY (u) x · ¯ <br />

Fε FX −1 (u) − βF −1<br />

Y (u) x .<br />

(33)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!