25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

278 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Putting tog<strong>et</strong>her equ<strong>at</strong>ions (E.126) and (E.137) we obtain<br />

<br />

<br />

∞<br />

1<br />

dx<br />

ɛ<br />

1<br />

1<br />

xν Cν<br />

which conclu<strong>de</strong>s the proof.<br />

<br />

1 + 1<br />

ν<br />

E.4 Deriv<strong>at</strong>ion of equ<strong>at</strong>ion (E.105)<br />

From equ<strong>at</strong>ion (E.111), we can <strong>de</strong>duce<br />

¯FY (y) =<br />

Using equ<strong>at</strong>ions (E.98) and (E.102), we obtain<br />

where<br />

x−x0<br />

ɛ<br />

2 ν+1<br />

2<br />

Pɛ(α ˜ Yu + η − αy) = Pɛ(γ ˜ Yu − αy) ·<br />

− 1<br />

xν <br />

<br />

<br />

<br />

= O(ɛ<br />

0 <br />

<br />

min{ν,1} ) , (E.138)<br />

ν−1<br />

ν 2 Cν<br />

yν −2<br />

1 + O(y ) . (E.139)<br />

<br />

γ = α 1 +<br />

Putting tog<strong>et</strong>her these results yields for the leading or<strong>de</strong>r<br />

∞<br />

dy ¯ FY (y) · Pɛ(α ˜ Yu + η − αy) =<br />

˜Yu<br />

= ν ν−1<br />

<br />

1 + O( ˜ Y −2<br />

<br />

u ) , (E.140)<br />

<br />

σ<br />

ν1/ν . (E.141)<br />

α<br />

∞<br />

dy<br />

˜Yu<br />

2 Cν<br />

ν<br />

α ˜ Yu<br />

ν−1<br />

ν 2 Cν<br />

yν ·<br />

∞<br />

1<br />

<br />

σ<br />

dx 1<br />

·<br />

xν where the change of variable x = y<br />

has been performed in the last equ<strong>at</strong>ion.<br />

˜Yu<br />

Cν<br />

1 + (γ ˜ Yu−αy) 2<br />

ν σ 2<br />

<br />

1 + 1<br />

ν<br />

Cν α ˜ Yu<br />

σ<br />

x− γ<br />

α<br />

σ<br />

α ˜ Yu<br />

ν+1<br />

2<br />

2 ν+1<br />

2<br />

, (E.142)<br />

We now apply lemma 2 with x0 = γ<br />

σ<br />

α > 1 and ɛ =<br />

α ˜ which goes to zero as u goes to 1. This gives<br />

Yu<br />

which shows th<strong>at</strong><br />

thus<br />

which finally yields<br />

∞<br />

dy ¯ FY (y) · Pɛ(α ˜ Yu + η − αy) ∼u→1<br />

˜Yu<br />

Pr[X > F −1<br />

−1<br />

X (u), Y > FY (u)] ∼u→1 F −1<br />

Y ( ˜ Yu)<br />

Pr[X > F −1<br />

X<br />

−1<br />

(u)|Y > F (u)] ∼u→1<br />

λ =<br />

Y<br />

1<br />

1 + σ<br />

α<br />

40<br />

ν ν−1<br />

2 Cν<br />

α ˜ Y ν u<br />

ν α<br />

γ<br />

ν α<br />

= (1 − u)<br />

γ<br />

, (E.143)<br />

, (E.144)<br />

ν α<br />

, (E.145)<br />

γ<br />

ν α<br />

, (E.146)<br />

γ<br />

ν . (E.147)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!