25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.3 Non-symm<strong>et</strong>ric ass<strong>et</strong>s<br />

In the case of asymm<strong>et</strong>ric ass<strong>et</strong>s, we have to consi<strong>de</strong>r the formula (53-54), and using the same not<strong>at</strong>ion as in<br />

the previous section, the moments are again given by (77) with the coefficient γ(n, p) now equal to :<br />

<br />

Γ<br />

4π<br />

− <br />

q1 p<br />

+2Γ + 1 Γ<br />

2<br />

<br />

Γ<br />

4π<br />

− <br />

q1 p<br />

−2Γ + 1 Γ<br />

2<br />

<br />

Γ<br />

4π<br />

+ <br />

q 1 p<br />

−2Γ + 1 Γ<br />

2<br />

<br />

Γ<br />

4π<br />

+ <br />

q 1 p<br />

+2Γ + 1 Γ<br />

2<br />

γ(n, p) = (−1)n (χ − 1 )p (χ − 2 )n−p<br />

+ (−1)p (χ − 1 )p (χ + 2 )n−p<br />

+ (−1)n−p (χ + 1 )p (χ − 2 )n−p<br />

+ (χ+ 1 )p (χ + 2 )n−p<br />

− − <br />

q1 p + 1 q2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

− <br />

q2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q− 1 p − 1<br />

2<br />

− + <br />

q1 p + 1 q 2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

+ <br />

q 2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q− 1 p − 1<br />

2<br />

+ − <br />

q 1 p + 1 q2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

− <br />

q2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q+ 1 p − 1<br />

2<br />

+ + <br />

q 1 p + 1 q 2 (n − p) + 1<br />

Γ<br />

2F1<br />

2<br />

2<br />

+ <br />

q 2 (n − p)<br />

+ 1 ρ 2F1 −<br />

2<br />

q+ 1<br />

<br />

− q− 1 p<br />

2 , −q− 2<br />

, − q− 2<br />

<br />

− q− 1 p<br />

2 , −q+ 2<br />

, − q+ 2<br />

<br />

− q+ 1 p<br />

2 , −q− 2<br />

, − q− 2<br />

<br />

− q+ 1 p<br />

2 , −q+ 2<br />

p − 1<br />

, −<br />

2<br />

q+ 2<br />

(n − p)<br />

2<br />

449<br />

; 1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 +<br />

2<br />

(n − p)<br />

;<br />

2<br />

1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 +<br />

2<br />

(n − p)<br />

;<br />

2<br />

1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 +<br />

2<br />

(n − p)<br />

;<br />

2<br />

1<br />

<br />

; ρ2 +<br />

2<br />

(n − p) − 1<br />

;<br />

2<br />

3<br />

<br />

; ρ2 .<br />

2<br />

(85)<br />

This formula is obtained in the same way as for the formulas given in the symm<strong>et</strong>ric case. We r<strong>et</strong>rieve the<br />

formula (78) as it should if the coefficients with in<strong>de</strong>x ’+’ are equal to the coefficients with in<strong>de</strong>x ’-’.<br />

8.4 Empirical tests<br />

Extensive tests have been performed for currencies un<strong>de</strong>r the assumption th<strong>at</strong> the distributions of ass<strong>et</strong><br />

r<strong>et</strong>urns are symm<strong>et</strong>ric (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b).<br />

As an exemple, l<strong>et</strong> us consi<strong>de</strong>r the Swiss franc and the Japanese Yen against the US dollar. The calibr<strong>at</strong>ion<br />

of the modified Weibull distribution to the tail of the empirical histogram of daily r<strong>et</strong>urns give (qCHF =<br />

1.75, cCHF = 1.14, χCHF = 2.13) and (qJP Y = 2.50, cJP Y = 0.8, χJP Y = 1.25) and their correl<strong>at</strong>ion<br />

coefficient is ρ = 0.43.<br />

Figure 18 plots the excess kurtosis of the sum wCHF xCHF + wJP Y xJP Y as a function of wCHF , with<br />

the constraint wCHF + wJP Y = 1. The thick solid line is d<strong>et</strong>ermined empirically, by direct calcul<strong>at</strong>ion of<br />

the kurtosis from the d<strong>at</strong>a. The thin solid line is the theor<strong>et</strong>ical prediction using our theor<strong>et</strong>ical formulas<br />

with the empirically d<strong>et</strong>ermined exponents c and characteristic scales χ given above. While there is a nonnegligible<br />

difference, the empirical and theor<strong>et</strong>ical excess kurtosis have essentially the same behavior with<br />

their minimum reached almost <strong>at</strong> the same value of wCHF .<br />

Three origins of the discrepancy b<strong>et</strong>ween theory and empirical d<strong>at</strong>a can be invoked. First, as already pointed<br />

out in the preceding section, the modified Weibull distribution with constant exponent and scale param<strong>et</strong>ers<br />

<strong>de</strong>scribes accur<strong>at</strong>ely only the tail of the empirical distributions while, for small r<strong>et</strong>urns, the empirical<br />

distributions are close to a Gaussian law. While putting a strong emphasis on large fluctu<strong>at</strong>ions, cumulants<br />

of or<strong>de</strong>r 4 are still significantly sensitive to the bulk of the distributions. Moreover, the excess kurtosis is<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!