25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

This yields<br />

<br />

×<br />

h+<br />

Sc−2<br />

− 2 dh e ik<br />

Sc−2 M(2)−1 w wt<br />

M (2)h+<br />

ik<br />

Sc−2 M(2)−1<br />

S c ( wiσi ) c−1<br />

P (S) ∝ e −<br />

⎡<br />

⎣1 + Sc−3 <br />

M<br />

6<br />

(3)<br />

<br />

dk k2<br />

e− 2S<br />

2π c−2 wtM (2)−1w ×<br />

ijk<br />

ijk hihjhk + · · ·<br />

⎤<br />

415<br />

⎦ . (167)<br />

Denoting by 〈·〉h the average with respect to the Gaussian distribution of h and by 〈·〉k the average with<br />

respect to the Gaussian distribution of k, we have :<br />

<br />

×<br />

⎡<br />

⎣1 + Sc−3<br />

6<br />

<br />

ijk<br />

P (S) ∝<br />

M (3)<br />

ijk 〈〈hihjhk〉h〉k + Sc−4<br />

24<br />

d<strong>et</strong> M (2)−1<br />

w t M (2)−1 w (2πS2−c ) N−1<br />

2 e −<br />

S c ( wiσi ) c−1 ×<br />

<br />

M (4)<br />

ijkl 〈〈hihjhkhl〉h〉k<br />

⎤<br />

+ · · · ⎦ . (168)<br />

We now invoke Wick’s theorem 2 , which st<strong>at</strong>es th<strong>at</strong> each term 〈〈hi · · · hp〉h〉k can be expressed as a product<br />

of pairwise correl<strong>at</strong>ion coefficients. Evalu<strong>at</strong>ing the average with respect to the symm<strong>et</strong>ric distribution of k,<br />

it is obvious th<strong>at</strong> odd-or<strong>de</strong>r terms will vanish and th<strong>at</strong> the count of powers of S involved in each even-or<strong>de</strong>r<br />

term shows th<strong>at</strong> all are sub-dominant. So, up to the leading or<strong>de</strong>r :<br />

<br />

P (S) ∝<br />

The m<strong>at</strong>rix M (2) can be calcul<strong>at</strong>ed, which yields<br />

M (2)<br />

kl<br />

and shows th<strong>at</strong> <br />

=<br />

=<br />

ijkl<br />

d<strong>et</strong> M (2)−1<br />

w t M (2)−1 w (2πS2−c ) N−1<br />

2 e −<br />

S c ( wiσi ) c−1 . (169)<br />

1<br />

( wiσi) c−2<br />

<br />

c<br />

<br />

wk<br />

c − 1 δkl +<br />

2 σk<br />

c2 c<br />

−1 2 V<br />

2 kl σ −1<br />

k σ c<br />

2 −1<br />

<br />

l , (170)<br />

1<br />

( wiσi) c−2 ˜ Mkl, (171)<br />

d<strong>et</strong> M (2)−1<br />

w t M (2)−1 w =<br />

c<br />

(N−1)( 2<br />

wiσi<br />

−1)<br />

The inverse m<strong>at</strong>rix ˜ M −1 s<strong>at</strong>isfies <br />

l ˜ Mkl · ( ˜ M −1 )lj = δkj which can be rewritten:<br />

or equivalently<br />

<br />

c<br />

<br />

wk<br />

c − 1 (<br />

2 σk<br />

˜ M −1 )kj + c2<br />

2<br />

<br />

c<br />

<br />

c − 1 wk (<br />

2 ˜ M −1 )kj + c2<br />

2<br />

<br />

V −1<br />

kl · ( ˜ M −1 )ljσ c<br />

k<br />

l<br />

<br />

V −1<br />

kl · ( ˜ M −1 )ljσ c<br />

2<br />

k<br />

l<br />

<br />

d<strong>et</strong> ˜M −1<br />

wt ˜M −1 . (172)<br />

w<br />

2 −1<br />

σ c<br />

2 −1<br />

l = δkj (173)<br />

σ c<br />

2 −1<br />

l = δkj · σk (174)<br />

2 See for instance (Brézin <strong>et</strong> al. 1976) for a general introduction, (Sorn<strong>et</strong>te 1998) for an early applic<strong>at</strong>ion to the portfolio problem<br />

and (Sorn<strong>et</strong>te <strong>et</strong> al. 2000b) for a system<strong>at</strong>ic utiliz<strong>at</strong>ion with the help of diagrams.<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!