25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

402 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

4.1.1 Case of in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s<br />

“Super-exponential” portfolio (c > 1)<br />

Consi<strong>de</strong>r ass<strong>et</strong>s distributed according to modified Weibull distributions with the same exponent c > 1.<br />

The Value-<strong>at</strong>-Risk is given by<br />

VaRα = ξ(α) 2/c W (0) ·<br />

N<br />

i=1<br />

|wiχi| c<br />

<br />

c−1<br />

c−1<br />

2<br />

Introducing the Lagrange multiplier λ, the first or<strong>de</strong>r condition yields<br />

∂ ˆχ<br />

∂wi<br />

and the composition of the minimal risk portfolio is<br />

=<br />

λ<br />

ξ(α) W (0)<br />

wi ∗ = χ−c<br />

i <br />

j χ−c<br />

j<br />

which s<strong>at</strong>istifies the positivity of the Hessian m<strong>at</strong>rix Hjk = ∂2 ˆχ<br />

∂wj∂wk {w∗ i }<br />

The minimal risk portfolio is such th<strong>at</strong><br />

VaR ∗ α = ξ(α)2/c W (0)<br />

i χ−c<br />

1<br />

c<br />

j<br />

, (60)<br />

∀i, (61)<br />

<br />

<br />

, µ ∗ <br />

=<br />

i χ−c<br />

i µi<br />

<br />

j χ−c<br />

j<br />

where µi is the r<strong>et</strong>urn of ass<strong>et</strong> i and µ ∗ is the r<strong>et</strong>urn of the minimum risk portfolio.<br />

(second or<strong>de</strong>r condition).<br />

(62)<br />

, (63)<br />

sub-exponential portfolio (c ≤ 1)<br />

Consi<strong>de</strong>r ass<strong>et</strong>s distributed according to modified Weibull distributions with the same exponent c < 1.<br />

The Value-<strong>at</strong>-Risk is now given by<br />

VaRα = ξ(α) c/2 W (0) · max{|w1χ1|, · · · , |wNχN|}. (64)<br />

Since the weights wi are positive, the modulus appearing in the argument of the max() function can be<br />

removed. It is easy to see th<strong>at</strong> the minimum of VaRα is obtained when all the wiχi’s are equal, provi<strong>de</strong>d<br />

th<strong>at</strong> the constraint wi = 1 can be s<strong>at</strong>isfied. In<strong>de</strong>ed, l<strong>et</strong> us start with the situ<strong>at</strong>ion where<br />

w1χ1 = w2χ2 = · · · = wNχN . (65)<br />

L<strong>et</strong> us <strong>de</strong>crease the weight w1. Then, w1χ1 <strong>de</strong>creases with respect to the initial maximum situ<strong>at</strong>ion (65) but,<br />

in or<strong>de</strong>r to s<strong>at</strong>isfy the constraint <br />

i wi = 1, <strong>at</strong> least one of the other weights wj, j ≥ 2 has to increase, so<br />

th<strong>at</strong> wjχj increases, leading to a maximum for the s<strong>et</strong> of the wiχi’s gre<strong>at</strong>er than in the initial situ<strong>at</strong>ion where<br />

(65) holds. Therefore,<br />

and the constraint <br />

i wi = 1 yields<br />

w ∗ i = A<br />

A =<br />

χi<br />

, ∀i, (66)<br />

1<br />

<br />

i χ−1<br />

i<br />

14<br />

, (67)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!