25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

442 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

6.3 D<strong>et</strong>ermin<strong>at</strong>ion of the joint distribution : maximum entropy and Gaussian copula<br />

L<strong>et</strong> us now consi<strong>de</strong>r N random variables Xi with marginal distributions pi(xi). Using the transform<strong>at</strong>ion<br />

(38), we <strong>de</strong>fine N standard normal variables Yi. If these variables were in<strong>de</strong>pen<strong>de</strong>nt, their joint distribution<br />

would simply be the product of the marginal distributions. In many situ<strong>at</strong>ions, the variables are not<br />

in<strong>de</strong>pen<strong>de</strong>nt and it is necessary to study their <strong>de</strong>pen<strong>de</strong>nce.<br />

The simplest approach is to construct their covariance m<strong>at</strong>rix. Applied to the variables Yi, we are certain th<strong>at</strong><br />

the covariance m<strong>at</strong>rix exists and is well-<strong>de</strong>fined since their marginal distributions are Gaussian. In contrast,<br />

this is not ensured for the variables Xi. In<strong>de</strong>ed, in many situ<strong>at</strong>ions in n<strong>at</strong>ure, in economy, finance and in<br />

social sciences, pdf’s are found to have power law tails ∼ A<br />

x1+µ for large |x|. If µ ≤ 2, the variance and the<br />

covariances can not be <strong>de</strong>fined. If 2 < µ ≤ 4, the variance and the covariances exit in principle but their<br />

sample estim<strong>at</strong>ors converge poorly.<br />

We thus <strong>de</strong>fine the covariance m<strong>at</strong>rix:<br />

V = E[yy t ] , (42)<br />

where y is the vector of variables Yi and the oper<strong>at</strong>or E[·] represents the m<strong>at</strong>hem<strong>at</strong>ical expect<strong>at</strong>ion. A<br />

classical result of inform<strong>at</strong>ion theory (Rao 1973) tells us th<strong>at</strong>, given the covariance m<strong>at</strong>rix V , the best joint<br />

distribution (in the sense of entropy maximiz<strong>at</strong>ion) of the N variables Yi is the multivari<strong>at</strong>e Gaussian:<br />

1<br />

P (y) =<br />

(2π) N/2d<strong>et</strong>(V ) exp<br />

<br />

− 1<br />

2 ytV −1 <br />

y . (43)<br />

In<strong>de</strong>ed, this distribution implies the minimum additional inform<strong>at</strong>ion or assumption, given the covariance<br />

m<strong>at</strong>rix.<br />

Using the joint distribution of the variables Yi, we obtain the joint distribution of the variables Xi:<br />

<br />

∂yi <br />

P (x) = P (y) <br />

∂xj<br />

, (44)<br />

<br />

<br />

where ∂yi<br />

<br />

<br />

is the Jacobian of the transform<strong>at</strong>ion. Since<br />

we g<strong>et</strong><br />

∂xj<br />

This finally yields<br />

P (x) =<br />

∂yi<br />

∂xj<br />

= √ 2πpj(xj)e 1<br />

2 y2 i δij , (45)<br />

<br />

∂yi <br />

N<br />

<br />

∂xj<br />

= (2π)N/2<br />

i=1<br />

pi(xi)e 1<br />

2 y2 i . (46)<br />

<br />

1<br />

exp −<br />

d<strong>et</strong>(V ) 1<br />

2 yt (x) (V −1 <br />

N<br />

− I)y (x) pi(xi) . (47)<br />

i=1<br />

As expected, if the variables are in<strong>de</strong>pen<strong>de</strong>nt, V = I, and P (x) becomes the product of the marginal<br />

distributions of the variables Xi.<br />

L<strong>et</strong> F (x) <strong>de</strong>note the cumul<strong>at</strong>ive distribution function of the vector x and Fi(xi), i = 1, ..., N the N corresponding<br />

marginal distributions. The copula C is then such th<strong>at</strong><br />

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) . (48)<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!