25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Equ<strong>at</strong>ion (46) <strong>de</strong>pends on c only and must be solved numerically. Then, the resulting value of c can be<br />

reinjected in (47) to g<strong>et</strong> d. The maximum of the log-likelihood function is<br />

1<br />

T LSE T (ĉ, d) ˆ = ln ĉ ĉ − 1<br />

+<br />

dˆ ĉ T<br />

T<br />

∑<br />

i=1<br />

91<br />

lnxi − 1. (48)<br />

Since c > 0, the vector √ N(ĉ − c, ˆ<br />

d − d) is asymptotically normal, with a covariance m<strong>at</strong>rix whose<br />

expression is given in appendix D by the inverse of K11.<br />

It should be noted th<strong>at</strong> maximum likelihood equ<strong>at</strong>ions (46-47) admit a solution with positive c not for<br />

all possible samples (x1,··· ,xN). In<strong>de</strong>ed, the function<br />

h(c) = 1<br />

c −<br />

1<br />

T ∑T xi c xi<br />

i=1 u ln<br />

u<br />

c +<br />

− 1 1 T<br />

ln<br />

T<br />

xi<br />

, (49)<br />

u<br />

1<br />

T ∑T xi<br />

i=1 u<br />

which is the total <strong>de</strong>riv<strong>at</strong>ive of LSE T (c, d(c)), ˆ is a <strong>de</strong>creasing function of c. It means, as one can expect,<br />

th<strong>at</strong> the likelihood function is concave. Thus, a necessary and sufficient condition for equ<strong>at</strong>ion (46) to<br />

admit a solution is th<strong>at</strong> h(0) is positive. After some calcul<strong>at</strong>ions, we find<br />

which is positive if and only if<br />

h(0) = 2 1<br />

T<br />

xi ∑ln u<br />

2 xi<br />

T ∑ln u<br />

∑<br />

i=1<br />

2 1 xi − T ∑ln2 u<br />

, (50)<br />

2 1 xi<br />

2<br />

T<br />

∑ln −<br />

u<br />

1 2 xi<br />

T<br />

∑ln > 0. (51)<br />

u<br />

However, the probability of occurring a sample providing a neg<strong>at</strong>ive maximum-likelyhood estim<strong>at</strong>e of<br />

c tends to zero (un<strong>de</strong>r Hypothesis of SE with a positive c) as<br />

<br />

Φ − c√ <br />

N σ<br />

√ e<br />

σ 2π Nc − c2N 2σ2 , (52)<br />

i.e. exponentially with respect to N. Here σ2 is the variance of the limit Gaussian distribution of<br />

maximum-likelihood c-estim<strong>at</strong>or th<strong>at</strong> can be <strong>de</strong>rived explicitly. If h(0) is neg<strong>at</strong>ive, LSE T reaches its<br />

maximum <strong>at</strong> c = 0 and in such a case<br />

1<br />

T LSE<br />

<br />

1 xi<br />

T (c = 0) = −ln<br />

T<br />

∑ln −<br />

u<br />

1<br />

T ∑lnxi − 1. (53)<br />

Now, if we apply maximum likelihood estim<strong>at</strong>ion based on SE assumption to samples distributed<br />

differently from SE, then we can g<strong>et</strong> neg<strong>at</strong>ive c-estim<strong>at</strong>e with some positive probability not tending<br />

to zero with N → ∞. If sample is distributed according to Par<strong>et</strong>o distribution, for instance, then<br />

maximum-likelihood c-estim<strong>at</strong>e converges in probability to a Gaussian random variable with zero<br />

mean, and thus the probability of neg<strong>at</strong>ive c-estim<strong>at</strong>es converges to 0.5.<br />

A.3 The Exponential distribution<br />

The Exponential distribution function is given by equ<strong>at</strong>ion (24), and its <strong>de</strong>nsity is<br />

fu(x|d) = exp <br />

u <br />

d exp −<br />

d<br />

x<br />

<br />

,<br />

d<br />

x ≥ u. (54)<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!