25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

D Generalized capital ass<strong>et</strong> princing mo<strong>de</strong>l<br />

Our proof of the generalized capital ass<strong>et</strong> princing mo<strong>de</strong>l is similar to the usual <strong>de</strong>montr<strong>at</strong>ion of the CAPM.<br />

L<strong>et</strong> us consi<strong>de</strong>r an efficient portfolio P. It necessarily s<strong>at</strong>isfies equ<strong>at</strong>ion (105) in appendix B :<br />

459<br />

∂ρα<br />

(w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = λ1 (µ(i) − µ0), i ∈ {1, · · · , N}. (131)<br />

L<strong>et</strong> us now choose any portfolio R ma<strong>de</strong> only of risky ass<strong>et</strong>s and l<strong>et</strong> us <strong>de</strong>note by wi(R) its weights. We<br />

can thus write<br />

N<br />

i=1<br />

wi(R) · ∂ρα<br />

(w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = λ1<br />

N<br />

wi(R) · (µ(i) − µ0), (132)<br />

i=1<br />

= λ1 (µR − µ0). (133)<br />

We can apply this last rel<strong>at</strong>ion to the mark<strong>et</strong> portfolio Π, because it is only composed of risky ass<strong>et</strong>s (as<br />

proved in appendix B). This leads to wi(R) = w ∗ i and µR = µΠ, so th<strong>at</strong><br />

N<br />

i=1<br />

which, by the homogeneity of the risk measures ρα, yields<br />

Substituting equ<strong>at</strong>ion (131) into (135) allows us to obtain<br />

where<br />

w ∗ i · ∂ρα<br />

(w<br />

∂wi<br />

∗ 1, · · · , w ∗ N) = λ1 (µΠ − µ0), (134)<br />

α · ρα(w ∗ 1, · · · , w ∗ N) = λ1 (µΠ − µ0) . (135)<br />

µj − µ0 = β j α · (µΠ − µ0), (136)<br />

β j α =<br />

<br />

∂<br />

1<br />

ln ρα α<br />

∂wj<br />

<br />

, (137)<br />

calcul<strong>at</strong>ed <strong>at</strong> the point {w∗ 1 , · · · , w∗ N }. Expression (135) with (137) provi<strong>de</strong>s our CAPM, generalized with<br />

respect to the risk measures ρα.<br />

In the case where ρα <strong>de</strong>notes the variance, the second-or<strong>de</strong>r centered moment is equal to the second-or<strong>de</strong>r<br />

cumulant and reads<br />

Since<br />

we find<br />

C2 = w ∗ 1 · Var[X1] + 2w ∗ 1w ∗ 2 · Cov(X1, X2) + w ∗ 2 · Var[X2], (138)<br />

= Var[Π] . (139)<br />

1 ∂C2<br />

·<br />

2 ∂w1<br />

= w ∗ 1 · Var[X1] + w ∗ 2 · Cov(X1, X2) , (140)<br />

= Cov(X1, Π), (141)<br />

β = Cov(X1, XΠ)<br />

Var[XΠ]<br />

which is the standard result of the CAPM <strong>de</strong>rived from the mean-variance theory.<br />

35<br />

, (142)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!