25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 323<br />

H3: There is two constant (l1, l2) ∈ R+ × R+, such th<strong>at</strong><br />

F1<br />

lim<br />

u→1<br />

−1 (u)<br />

FY −1 (u) = l1,<br />

F2<br />

and lim<br />

u→1<br />

−1 (u)<br />

FY −1 (u) = l2, (66)<br />

then, the coefficient of (upper) tail <strong>de</strong>pen<strong>de</strong>nce of (X, Y ) is given by<br />

A.2.2 Proof<br />

λ =<br />

∞<br />

maxl 1<br />

β1 , l 2<br />

β2 dx f(x). (67)<br />

We first give a general expression for the probability for X to be larger than F −1<br />

X (u) knowing th<strong>at</strong><br />

(u) :<br />

Y is larger than F −1<br />

Y<br />

Lemma 3<br />

The probability th<strong>at</strong> X is larger than F −1<br />

X<br />

F −1<br />

Y (u)<br />

<br />

1 − u<br />

dx PY<br />

−1<br />

(u) knowing th<strong>at</strong> Y is larger than F (u) is given by :<br />

Pr X > F −1<br />

−1<br />

X (u)|Y > FY (u) =<br />

−1<br />

FY (u) x · ¯ <br />

Fε1,ε2 F1 −1 (u) − β1F −1<br />

Y (u) x, F2 −1 (u) − β1F −1<br />

Y (u) x . (68)<br />

Proof : The proof is the same for lemma 1. <br />

L<strong>et</strong> us now <strong>de</strong>fine the function<br />

F −1<br />

Y (u)<br />

fu(x) =<br />

1 − u PY (F −1<br />

We can st<strong>at</strong>e the following result<br />

Lemma 4<br />

Un<strong>de</strong>r assumption H1 and H3, for all x ∈ [1, ∞),<br />

almost everywhere, as u goes to 1.<br />

Y (u) x) · ¯ Fε1,ε2 [F1 −1 (u) − β1F −1<br />

Y (u) x, F2 −1 (u) − β2F −1<br />

Y<br />

fu(x) −→ 1x>maxl 1<br />

β1 , l 2<br />

Proof: Applying the assumption H3, we have<br />

and<br />

lim<br />

u→1 F1 −1 (u) − β1F −1<br />

Y<br />

lim<br />

u→1 F2 −1 (u) − β2F −1<br />

Y<br />

(u) x = lim<br />

=<br />

u→1<br />

(u) x = lim<br />

=<br />

Y<br />

(u) x] . (69)<br />

β2 · f(x), (70)<br />

β1F −1<br />

Y (u)<br />

<br />

−∞ if x > l1<br />

β1 ,<br />

∞ if x < l1<br />

β1 ,<br />

u→1<br />

β2F −1<br />

Y (u)<br />

<br />

−∞ if x > l2<br />

β2 ,<br />

∞ if x < l2<br />

β2 ,<br />

24<br />

F1 −1 (u)<br />

β1F −1 − x<br />

Y (u)<br />

F2 −1 (u)<br />

β2F −1 − x<br />

Y (u)<br />

<br />

<br />

(71)<br />

(72)<br />

(73)<br />

(74)<br />

(75)<br />

(76)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!